22 April 2014

Mr. Roger Papler California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, CA 94612

Subject: Report of Results - Potential Vapor Intrusion

Evaluation at the Former Siemens Facility

Intersil/Siemens Superfund Site

Cupertino, California

Site Cleanup Requirements Order No. 90-119

Dear Mr. Papler:

On behalf of SMI Holding LLC (SMI), ERM-West, Inc. (ERM) has prepared this *Report of Results – Potential Vapor Intrusion Evaluation at the Former Siemens Facility*, Intersil/Siemens Superfund Site located in Cupertino, California.

If you have any questions regarding this report, please do not hesitate to contact me.

Sincerely,

Heather Balfour, P.E.

Project Manager

HDB/dao/0201040.01SC

cc: Melanie Morash, USEPA (morash.melanie@epamail.epa.gov)

Susan O'Connor, SMI Holding LLC (sue.oconnor@siemens.com)

Chuck Hunnewell, SMI Holding LLC

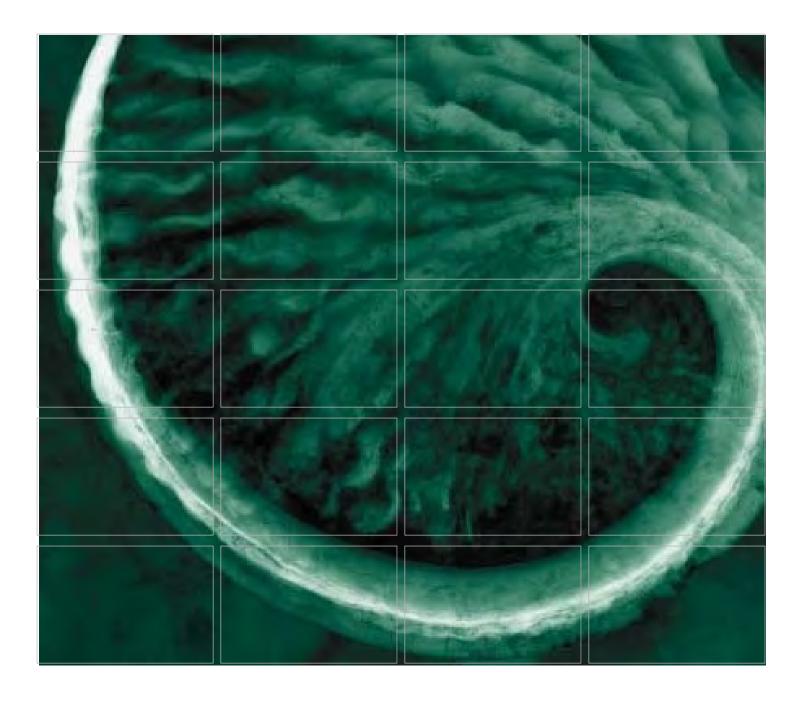
(chuck.hunnewell@siemens.com)

Lance Hauer, General Electric Company (Lance.Hauer@ge.com)

Susan G. Colman (sgcolman@comcast.net)

Avery Whitmarsh, AMEC (avery.whitmarsh@amec.com)

Russ Winget, American Realty Capital (rwinget@arlcap.com)


Ray Hutchison, Nova Consulting (ray.hutchison@novaconsulting.com)

Resources Management

Environmental

2525 Natomas Park Drive Suite 350 Sacramento, CA 95833 (916) 924-9378 (916) 920-9378 (fax) www.erm.com

Prepared for: SMI Holding LLC

Report of Results – Potential Vapor Intrusion Evaluation at the Former Siemens Facility

Intersil/Siemens Superfund Site Cupertino, California Site Cleanup Requirements Order No. 90-119

April 2014

www.erm.com

SMI Holding LLC

Report of Results – Potential Vapor Intrusion Evaluation at the Former Siemens Facility

Intersil/Siemens Superfund Site Cupertino, California Site Cleanup Requirements Order No. 90-119

April 2014

Project No. 0201040.01SC

Heather D. Balfour, P.E.

Project Manager

Benjamin Leslie-Bole *Partner-in-Charge*

Environmental Resources Management

2525 Natomas Park Drive, Suite 350 Sacramento, California 95833

T: 916-924-9378 F: 916-920-9378

TABLE OF CONTENTS

LIST	OF FI	GURES	ii
LIST	OF TA	ABLES	ii
LIST	OF A	CRONYMS	iii
EXEC	CUTIV	E SUMMARY	iv
1.0	INTI	RODUCTION	1
2.0	BAC	KGROUND	2
	2.1	CONSTITUENTS OF CONCERN AND SCREENING CRITERIA	2
	2.2	FORMER SIEMENS FACILITY	3
	2.3	PREVIOUS VAPOR INTRUSION INVESTIGATIONS	4
3.0	2014	SAMPLING EVENT	7
	3.1	PRE-SAMPLING ACTIVITIES	7
	3.2	INDOOR AND AMBIENT OUTDOOR AIR SAMPLING LOCATIONS	8
	3.3	INDOOR AND AMBIENT AIR SAMPLING ACTIVITIES	8
	3.4	HEATING, VENTILATION, AND AIR CONDITIONING SUSPENSION	N 9
	3.5	FIELD METHODOLOGY	9
	3.6	LABORATORY ANALYSIS	11
	3.7	METEOROLOGICAL DATA	11
	3.8	ANALYTICAL RESULTS	11
	3.9	QUALITY ASSURANCE/QUALITY CONTROL EVALUATION	12
4.0	CON	CLUSIONS AND RECOMMENDATION	14
5.0	REFI	ERENCES	15

LIST OF FIGURES

1	Site Location Map	following text
2	Site Detail Map	
3	Indoor Air and Ambient Air Sample Location	ns
LIST O	F TABLES	
1	Previous Site Sample Results	following figures
2	Indoor Air and Ambient Air Sample Location	ns
3	Volatile Organic Compounds Detected in Ind	door Air
4	Comparison of Samples Collected at Ground Sprinkler Systems	l Penetrations for
APPEN	IDIX A — PREVIOUS INDOOR AIR SAMPLING	DOCUMENTATION
APPEN	IDIX B — CANISTER MEDIA CERTIFICATION R	EPORTS
APPEN	IDIX C – INDOOR AIR SAMPLING FORM - SUI	MMA CANISTERS
APPEN	IDIX D — SAMPLE LOCATION PHOTO LOG	
APPEN	IDIX E — LABORATORY ANALYTICAL REPORT	ΓS
APPEN	IDIX F — WEATHER DATA	
APPEN	IDIX G — DATA QUALITY REVIEW MEMO	

LIST OF ACRONYMS

μg/m³ Micrograms per cubic meter

1,1,1-TCA 1,1,1-Trichloroethane

Air Toxics Eurofins Air Toxics, Inc.

Cleanup Order Final Site Cleanup Order No. 90-119

COC Constituent of concern

DCA Dichloroethane
DCE Dichloroethene

ENVIRON ENVIRON International Corporation

ERM ERM-West, Inc.

HVAC Heating, ventilation, and air conditioning

in. Hg Inches of mercury

NP Not published

PCE Tetrachloroethene

PID Photoionization detector

ppbv Parts-per-billion by volume

QA/QC Quality assurance/quality control

RWQCB California Regional Water Quality Control Board, San

Francisco Bay Region

SMI Holding, LLC

TCE Trichloroethene

USEPA United States Environmental Protection Agency

VOC Volatile organic compound

EXECUTIVE SUMMARY

On behalf of SMI Holding LLC (SMI), ERM-West, Inc. (ERM) has prepared this *Report of Results – Potential Vapor Intrusion Evaluation at Former Siemens Facility* for the Intersil/Siemens Superfund Site in Cupertino, California (Figure 1). This report summarizes the results of indoor and outdoor air samples collected to evaluate the potential for volatile organic compounds in groundwater beneath the site to impact indoor air quality within the former Siemens facility.

In a letter dated 11 December 2013, the San Francisco Bay Regional Water Quality Control Board (RWQCB) and United States Environmental Protection Agency (USEPA) requested additional vapor intrusion studies to be conducted at the buildings located at the former Siemens facility to evaluate the following items:

- Commercial indoor air sampling with the heating, ventilation, and air conditioning (HVAC) system turned off; and
- Comparison of indoor air sampling results to the trichloroethene (TCE) short-term removal action levels and USEPA's updated long-term TCE screening levels.

In response to this request, SMI submitted *Revised Third Addendum to Work Plan to Evaluate Potential Vapor Intrusion* (Third Addendum Work Plan) on 14 February 2014. Sampling was conducted in February 2014 in accordance with the Third Addendum Work Plan, which was approved by the RWQCB and USEPA on 14 February 2014. This report documents the results of the February 2014 sampling.

The former Siemens facility consists of two, two-story buildings constructed on a common concrete slab. The first floors of the buildings are connected and the second floors are physically separated.

The constituents of concern (COCs) for vapor intrusion at the site include: 1,1-dichloroethane; 1,1-dichloroethene (DCE); cis-1,2-DCE; trans-1,2-DCE; Freon 113; 1,1,1-trichloroethane; TCE; toluene; tetrachloroethene; and vinyl chloride. The analytical data were evaluated using a tiered approach, as defined below:

• Tier 1: Indoor air sample results were compared to outdoor air concentrations to evaluate whether indoor air quality may be affected by ambient sources.

- Tier 2: Indoor air sample results were compared to short-term healthrisk-based screening criteria, including method reporting limits or Interim Short-Term Response Action Levels for TCE provided by USEPA.
- Tier 3: Indoor air sample results were compared to long-term healthrisk-based screening criteria Regional Screening Levels.

Four previous vapor intrusion evaluations have been completed at the former Siemens facility. The results from sampling in August 2000 and August 2002 indicated nondetect levels of the COCs for the site. The November 2002 and March 2007 sampling events reported no compounds above their respective Tier 2 or Tier 3 screening levels.

In February 2014, ERM collected 23 indoor air and two ambient outdoor air samples with the HVAC system shut down. No compounds were detected above their respective Tier 2 or Tier 3 screening levels.

Results from indoor air sampling conducted in 2002, 2007, and 2014 consistently report no COC detections in excess of Tier 2 or Tier 3 screening levels. These data confirm there is no unacceptable risk to indoor workers associated with COCs reported in subsurface soil or groundwater. For these reasons, no further vapor intrusion assessment is recommended at the former Siemens facility.

1.0 INTRODUCTION

On behalf of SMI Holding LLC (SMI), ERM-West, Inc. (ERM) has prepared this *Report of Results – Potential Vapor Intrusion Evaluation at Former Siemens Facility* for the Intersil/Siemens Superfund Site in Cupertino, California (Figure 1). This report summarizes the results of indoor and outdoor air samples collected to evaluate the potential for volatile organic compounds (VOCs) in groundwater beneath the site to impact indoor air quality within the former Siemens facility. This sampling was conducted consistent with the 14 February 2014 California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) and the United States Environmental Protection Agency (USEPA) approved *Revised Third Addendum to Work Plan to Evaluate Potential Vapor Intrusion* (Third Addendum Work Plan; ERM, 2014).

Section 2 of this report provides a brief background on the site and describes and summarizes the results of indoor air sampling activities conducted in 2002 and 2007. Section 3 of this report describes the February 2014 sampling event and summarizes the results procedures and results. Section 4 provides a conclusions and recommendations based on the reported results.

2.0 BACKGROUND

Groundwater investigations at the former Siemens facility began in 1983. Investigations results identified trichloroethene (TCE) in groundwater as the primary constituent of concern (COC) at the site. The former Siemens facility is being remediated under the August 1990 RWQCB Final Site Cleanup Order No. 90-119 (Cleanup Order). Detailed descriptions of the historical remedial activities at the site are summarized in the Five-Year Status Reports (Geomatrix and LFR, 1995, 2000, and 2005; AMEC and LFR, 2009).

In a letter dated 11 December 2013 (RWQCB, 2013), the RWQCB and USEPA requested additional vapor intrusion studies to be conducted at the buildings located at the former Siemens facility to evaluate the following items:

- Commercial indoor air sampling with the heating, ventilation, and air conditioning (HVAC) system turned off; and
- Comparison of indoor air sampling results to the TCE short-term removal action levels and USEPA's updated long-term TCE screening levels.

This report documents the results of the sampling conducted in February 2014 in response to the 11 December 2013 letter.

2.1 CONSTITUENTS OF CONCERN AND SCREENING CRITERIA

The COCs for this investigation are the same as those for the 12 February 2012 Work Plan to Evaluate Potential Vapor Intrusion, Intersil/Siemens Site, Indoor Air Study Area (AMEC Geomatrix, Inc., 2012) (chemicals specified with remediation goals in the Cleanup Order) and any additional VOCs detected in grab groundwater sampling collected from A1 depth interval in the Off-Site Study Area. The COCs for the indoor air evaluation are:

- 1,1-dichloroethane (DCA)
- 1,1-dichlorethene (DCE)
- cis-1,2-DCE
- trans-1,2-DCE
- Freon 113

- 1,1,1-trichloroethane (1,1,1-TCA)
- TCE
- Toluene
- Tetrachloroethene (PCE)
- Vinyl chloride

In addition, chloroform was included at the request of USEPA to evaluate whether chemicals detected in indoor air may be present but unrelated to subsurface sources.

The selection of screening criteria for evaluation of the analytical data collected in this investigation is presented in the Third Addendum Work Plan. The analytical data were evaluated using a tiered approach, as defined below:

- Tier 1: Indoor air sample results were compared to outdoor air concentrations to evaluate whether indoor air quality may be affected by ambient sources.
- Tier 2: Indoor air sample results were compared to short-term healthrisk-based screening criteria, including method reporting limits or Interim Short-Term Response Action Levels for TCE provided by USEPA.
- Tier 3: Indoor air sample results were compared to long-term healthrisk-based screening criteria Regional Screening Levels.

The screening criteria selected for the Tier 2 and Tier 3 screening level assessments for the former Siemens facility are presented on Tables 1 and 3, respectively.

2.2 FORMER SIEMENS FACILITY

The former Siemens facility consists of two, two-story buildings constructed on a common concrete slab. The northern building faces Homestead Road (19000 Homestead Road, 49,550 square feet) and the southern building faces North Tantau Avenue (10950 North Tantau Avenue, 52,230 square feet); both buildings were constructed in approximately 1968 (Figure 2). The first floors of the buildings are connected and the second floors are physically separated. The combined structures operate under five different HVAC zones.

Kaiser Permanente, the current site tenant, provides a number of outpatient health-care services, including a mind-body wellness center, chemical dependency clinic, child and adolescent psychiatry unit, and adult psychiatry unit.

2.3 PREVIOUS VAPOR INTRUSION INVESTIGATIONS

Four previous vapor intrusion evaluations have been completed at the former Siemens facility, including:

- August 2000 Clayton Group Services, Inc., performed an indoor air quality evaluation.
- August 2002 ATC Associates, Inc., performed an indoor air quality investigation and risk assessment.
- November 2002 ENVIRON International Corporation (ENVIRON) conducted an indoor air quality assessment and site visit.
- March 2007 ENVIRON conducted an indoor air quality assessment.

Limited details regarding the investigation and results for the August 2000 and August 2002 sample events are available. The following summary is provided within the *Third Five-Year Review, Intersil/Siemens Superfund Site, Cupertino, Santa Clara County, California* (RWQCB, 2005):

Because there is a building located at the former Siemens facility used for commercial purposes, two indoor air sampling events were conducted in August 2000 and 2002. The results of these samples indicated non-detectable levels of the VOCs of concern. Because the SVE system did not operate during daytime office hours, it should be noted that the samples were collected when the SVE system was turned off but not after the SVE system had been shut down for a substantial period. At that time, the consultant concluded that there were no risks to public health based on that data. However, the reporting limits for TCE and vinyl chloride were higher than the recently revised February 2005 Environmental Screening Levels (ESLs) for indoor vapor intrusion. Additional indoor air sampling is planned when the existing SVE system has been shut down long enough to allow equilibrium to be reestablished in the vadose zone. Siemens does not plan to dismantle the SVE system until potential indoor vapor intrusion issues have been addressed.

The November 2002 sample event is summarized within the report entitled: *Indoor Air Quality Letter Report* (ENVIRON, 2003) (Appendix A). Six indoor air and one outdoor samples were collected using Summa canisters with 6-hour flow controllers. These samples were collected on a Monday following a weekend when the HVAC activity was reduced for weekend conservation (i.e., HVAC activity on the weekend is 3 hours per day). The indoor air samples were collected on the first floor in areas where floor penetrations and/or cracks were observed.

The March 2007 sample event was also performed by ENVIRON. A copy of the analytical tables and sample location photographs for the March 2007 event are included in Appendix A. Six indoor air and one outdoor samples were collected. Based on review of the sample location photographs, it appears that the March 2007 samples were also collected on the first floor in areas where floor penetrations and/or cracks were observed.

The results of the November 2002 and March 2007 indoor and outdoor air sample results are presented on Table 1 and a summary of the maximum results for detected COCs and a comparison of these concentrations to the respective Tier 1, Tier 2, and Tier 3 screening levels is provided below:

Sample ID	Sample Date	COC	Maximum Concentration	Tier 1 Screening Level	Tier 2 Screening Level	Tier 3 Screening Level
2A	11/25/02	Freon 113	2.2	<1.4	NP	130,000
6A	3/14/07	1,1,1-TCA	1.3	< 0.14	3,800	22,000
3A	3/14/07	TCE	0.56	0.19	7.0	3.0
7A	11/25/02	Toluene	5.5	2.5	3,800	22,000
4A	3/14/07	PCE	1.1	0.16	1,400	2.0

Notes:

Results are in micrograms per cubic meter ($\mu g/m^3$).

NP = not published

The following observations have been made for the 2002 and 2007 indoor air sampling results:

- The only detected COCs were Freon 113; 1,1,1-TCA; TCE; toluene; and PCE. Each of these compounds was detected at a higher concentration than the associated outdoor air sample collected (Tier 1 screening criteria). None of these compounds was detected above its respective Tier 2 or Tier 3 screening level.
- COCs 1,1-DCA; 1,1-DCE; cis-1,2-DCE; trans-1,2-DCE; and vinyl chloride were not detected above the respective method reporting limits during either the 2002 or 2007 indoor air sampling events.
- As seen on Table 1, chloroform was detected at all of the 2007 sample event locations with a maximum concentration of $0.34 \, \mu g/m^3$. Chloroform is not considered a COC for this site.
- The 2002 and 2007 samples were analyzed for the full suite of VOCs using Test Method TO-15. Other VOCs detected in indoor air include

acetone; benzene; n-butyl acetate; carbon tetrachloride; 1,4-dichlorobenzene; dichloromethane; ethylbenzene; Freon 11; 2-hexanone; isopropyl alcohol; m,p-xylenes; 4-methyl-2-pentanone; o-xylene; styrene; 1,2,4-trimethylbenzene; and vinyl acetate; however, none of these compounds is a COC for the former Siemens facility .

3.0 2014 SAMPLING EVENT

This section describes the field sampling activities, including pre-sampling activities, sample locations, sampling activities, and analytical results of indoor and outdoor air samples collected during the February 2014 indoor air sampling event at the former Siemens facility.

3.1 PRE-SAMPLING ACTIVITIES

Prior to conducting sampling at the former Siemens facility, SMI obtained permission for access from both the owner (MOF II Tantau Holdings, Inc) and their tenant, Kaiser. To better understand potential indoor exposures, ERM requested information from the tenant regarding the operational parameters of the HVAC units, the building plans and foundation design, and activities of building workers. ERM has received information indicating that the building has five different HVAC zones. The tenant has not however been able to provide a map that identifies the zones, which HVAC unit services each zone, or responses to other requests.

On 11 February 2014, representatives from ERM, USEPA and Kaiser conducted a building survey. During the site walk, representatives determined that the building foundation construction is most likely slabon-grade (i.e., there is no basement or crawl space) and there are no sumps. The buildings are two stories with two elevators connecting the two floors, in addition to several staircases. Floor drains are present in the restrooms and showers. During the site inspection and the sampling, ERM identified general cleaning chemicals in use and/or stored at the site, including Sheila Shine, a cleaning supply containing PCE and xylene (located at sample location IA6)¹. Additionally, Kaiser informed ERM and the USEPA that the server room (identified as location IA14 in Figure 3) is on a separate HVAC system that was required to stay on during the sampling.

The building survey included a pre-sampling site inspection and a realtime low-VOC concentration screening (i.e., parts-per-billion by volume

.

During the building survey the building manager requested site maintenance to remove the cleaning supply containing PCE. ERM confirmed with the building manager that this was completed on 13 February; however, the bottle was still present at sample location IA6 during the 16-17 February 2014 sampling event.

[ppbv]) for potential VOC source preferential pathways such as ground penetrations, drains, floor cracks, and electrical outlets. The device used for this screening was a photoionization detector (PID) monitoring capable of detecting total VOCs at concentrations less than 10 ppbv.

With one exception, all PID field screen monitoring within the buildings yielded no detectable concentrations of VOCs. One location, a restroom identified as room number 1033, had a reading 4.0 parts per million. USEPA and ERM representatives agreed that this reading was likely associated with aerosol air refresher, which had been spayed within the room just prior to surveying this location, and the PID reading was not indicative of a subsurface VOC source impacting indoor air.

3.2 INDOOR AND AMBIENT OUTDOOR AIR SAMPLING LOCATIONS

During the 11 February 2014 pre-sampling inspection and subsequent correspondence, the USEPA and ERM inspectors identified 23 representative indoor air sample locations and two representative outdoor air sample locations. Figure 3 illustrates the locations of the selected sample locations and Table 2 presents a description of each.

Selection criteria for sample locations included identification of preferential pathways and areas of regular worker exposure (e.g., office areas). In addition, the elevation of the sample interval was taken into consideration in the selection process. For sample locations selected to monitor human breathing zone, the target sample interval was set at 3 to 5 feet above ground surface. The target interval of 1 foot above ground surface was selected for locations chosen to monitor preferential pathways such as slab cracks and penetrations (Table 2 and Figure 3). Selection criteria for ambient outdoor air sample locations was based on areas that were not in the immediate vicinity of features, such as buildings, trees, or walls that may act as a wind shield and prevent the collection of a sample of outdoor air, to ensure the ambient outdoor air sample is representative of the general area.

3.3 INDOOR AND AMBIENT AIR SAMPLING ACTIVITIES

Between 16 and 17 February 2014, ERM collected 22 first-floor and one second-floor primary indoor air samples and three field duplicate indoor air samples at the former Siemens facility (Figure 3). In addition, two ambient outdoor air samples were also collected, both at ground level; one

near the southeastern corner of the buildings and the other mid-buildings on the east side of the building (in an approximately upwind direction).

3.4 HEATING, VENTILATION, AND AIR CONDITIONING SUSPENSION

As discussed above, ERM understands that the former Siemens facility operates under five different HVAC zones. For this sampling effort, Kaiser vacated the buildings between 11:30 p.m. on Friday, 14 February, and 2:00 p.m. Monday, 17 February 2014. Within this window, the sampling schedule was as follows:

- 14 February 2014 at 12:00 a.m. to 16 February 2014 at 12:00 p.m. Minimum 36-hour period following HVAC unit shut down prior to sample collection;
- 16 February 2014 ERM initiated indoor and outdoor air sample collection after 12:00 p.m.; and
- 17 February 2014 Completed 24-hour sampling.

3.5 FIELD METHODOLOGY

The fieldwork was conducted by trained ERM personnel. The samples were collected in 6-liter stainless-steel SummaTM canisters (canisters), fitted with designated, laboratory-supplied and individually certified clean 24-hour flow controllers. The canister media certification reports are presented in Appendix B. ERM conducted the indoor and outdoor air sampling using the following methodology:

- Following receipt of the canisters from the laboratory, ERM confirmed that there were no leaks in the Summa canisters between the laboratory and receipt at ERM's office. ERM removed the brass caps from each canister and threaded a laboratory-provided analog pressure gauge onto the valve. The canister valves were opened to confirm that initial vacuums in each canister were -28 inches of mercury (in. Hg) or greater. Once the vacuum was confirmed, the canister valves were closed and brass caps were threaded back onto the canister valve.
- At the site, ERM performed a "shut-in test" to confirm there were no leaks in the fittings. ERM removed the brass caps and then threaded on the laboratory-supplied flow controllers and laboratory-provided analog pressure gauge onto the valve and threaded the brass cap onto the inlet of the flow controller. The canister valves were opened briefly

- and then closed. The vacuum was monitored for several minutes to confirm that it was stable. If the vacuum was not stable, the fittings were tightened and the test was performed again.
- Following the "shut-in test," ERM personnel placed the canisters in their designated locations (Figure 3) within and outside the buildings. Samples representative of the breathing zone were placed on desks and/or other features such that the intake was at a level of approximately 3 to 5 feet above floor. Preferential pathway samples were placed on the floor and adjacent to the potential pathway being evaluated. Outdoor air samples were placed at breathing zone.
- On 16 February, each canister valve was then opened to allow sampling to commence, starting with the outdoor air samples (minimum of 1 hour prior to starting indoor air samples).
 Approximately 30 minutes to 1 hour after commencing sampling, the canisters were checked to ensure that they were operating properly by confirming that the vacuum in each canister had dropped from its initial reading.
- On 17 February, after approximately 24 hours of sample collection time, the canister valves were closed, the laboratory-provided flow controllers were removed, and a laboratory-provided analog pressure gauge was threaded onto each valve to confirm final canister vacuum. Following the vacuum check, the vacuum data were recorded on the field forms, the pressure gauges were removed, and the brass caps were threaded on the canister valves to prevent leakage during transit to the laboratory. Following sample collection, the range of final vacuum observed ranged from 0 to -9.5 in. Hg. The canisters and flow controllers were then packed into cardboard boxes for shipment to Eurofins Air Toxics, Inc. (Air Toxics) for chemical analysis.

The Air Sampling Form was completed during the sampling and includes basic project information; sampling information (including sample IDs, sample times, canister and flow controller IDs, and beginning and ending vacuums); and weather information. A copy of the Indoor Air Sampling Form—Summa Canisters is included in Appendix C. Digital photographs were taken at each sample collection area and a photo-log of the indoor and ambient outdoor air sample locations is provided as Appendix D.

3.6 LABORATORY ANALYSIS

All samples were analyzed by Air Toxics by USEPA Method TO-15 with selective ion monitoring for the COCs and chloroform as defined in the Work Plan. Laboratory analytical reports are presented in Appendix E.

3.7 METEOROLOGICAL DATA

Meteorological data for this investigation were obtained from the Moffett Field Meteorological Station, located in Moffett Field, near Mountain View, California (Appendix F). Data collected for the sampling period included maximum and minimum temperatures, precipitation accumulation, and a summary of hourly wind speed and direction. The meteorological data were cross-checked with field observations documented in the field sampling logs, and the published data matched ERM field observations.

3.8 ANALYTICAL RESULTS

As seen on Table 3 and summarized below, the detected maximum COC concentrations from the February 2014 sampling event are compared to the respective Tier 1, Tier 2, and Tier 3 screening levels:

Sample Location	COC	Maximum Concentration	Tier 1 Screening Level	Tier 2 Screening Level	Tier 3 Screening Level
IA13	1,1-DCE	1.2	<0.058	79	880
IA14	Freon 113	3.1	<1.1	NP	130,000
IA13	1,1,1-TCA	11	< 0.16	3,800	22,000
IA12	TCE	0.64	< 0.16	7.0	3.0
IA11 & IA18	Toluene	2.0	1.1	3,800	22,000
IA6	PCE	1.1	<0.2	1,400	2.0
IA13	Vinyl chloride	0.058	< 0.037	77	2.8

Notes:

Results are in $\mu g/m^3$.

NP = not published

The following observations have been made comparing analytical results for the indoor and outdoor air samples collected at the former Siemens facility in February 2014 with respect to the Tier 1, Tier 2, and Tier 3 screening levels:

- The detected COCs include: 1,1-DCE; Freon 113; 1,1,1-TCA; TCE; toluene; PCE; and vinyl chloride. Each of these compounds was detected at a higher concentration than the respective outdoor air sample collected (Tier 1 screening criteria). None of these compounds were detected above their respective Tier 2 or Tier 3 screening levels.
- COCs 1,1-DCA; cis-1,2-DCE; and trans-1,2-DCE were not detected above the respective method reporting limits.
- As seen on Table 1, chloroform was detected in three sample locations with a maximum concentration of 4.7 $\mu g/m^3$ at location IA06. This location also had the maximum detection of PCE. This sample location is the chemical storage room, which included the cleaning supply with PCE.

Because no VOCs were detected above the Tier 2 and 3 screening criteria, sub-slab sampling is not considered necessary.

Based on review of the sample location photographs, ERM determined that two locations with slab penetrations for the sprinkler systems were monitored during the 2002, 2007 and 2014 sample events. These two locations are identified as IA9 and IA12 in the most recent sample event. The detected compounds included chloroform, 1,1-DCE, Freon 113, 1,1,1-TCA, TCE, Toluene, and PCE; all detected one to five orders of magnitude below their respective Tier 2 and Tier 3 screening criteria (Table 4). In addition, the sample results for these multiple events are comparable. For example, the detected concentrations for TCE ranged from 0.56 μ g/m³ to 0.64 μ g/m³.

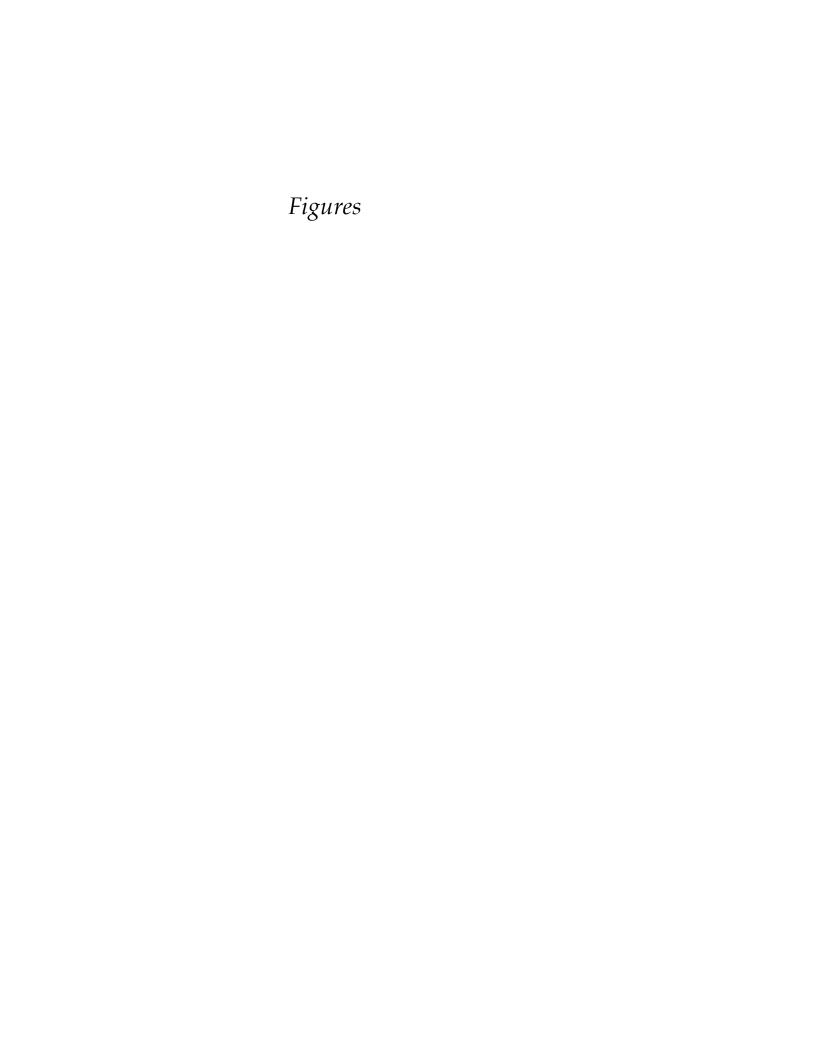
3.9 QUALITY ASSURANCE/QUALITY CONTROL EVALUATION

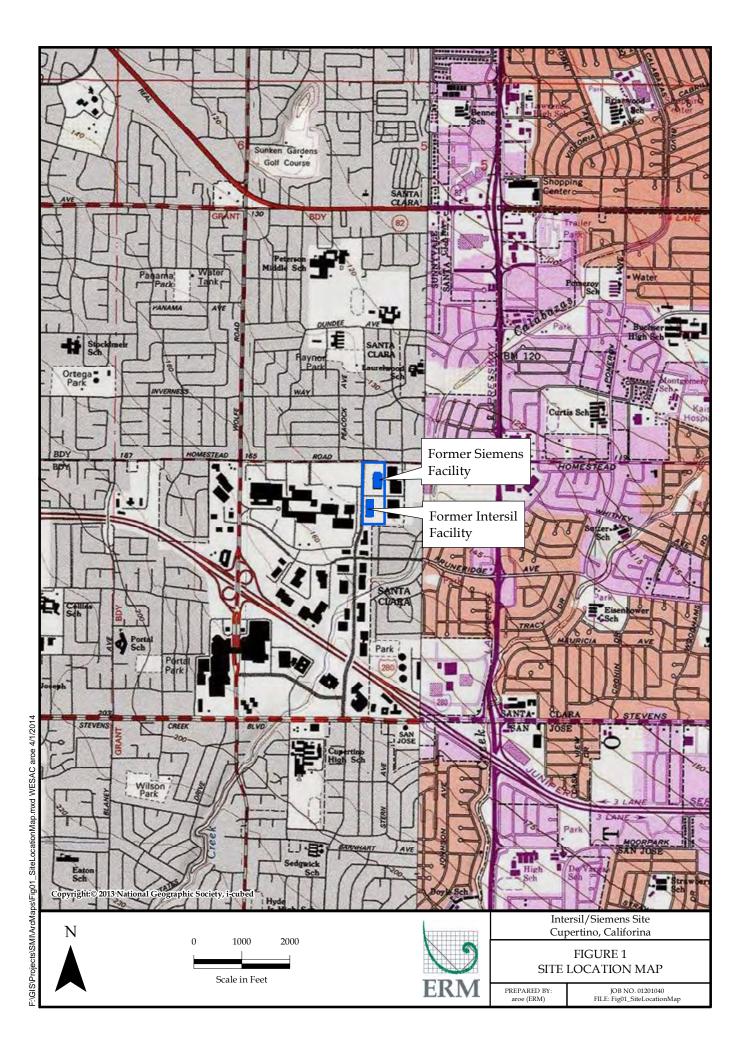
The purpose of the quality assurance/quality control (QA/QC) procedures is to assess the quality of the data by evaluating field equipment cleaning procedures, and the accuracy, precision, and completeness of the data. QA/QC procedures were described in the *Quality Assurance Project Plan* submitted with the Work Plan. ERM reviewed analytical data consistent with USEPA *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (USEPA, 2008).

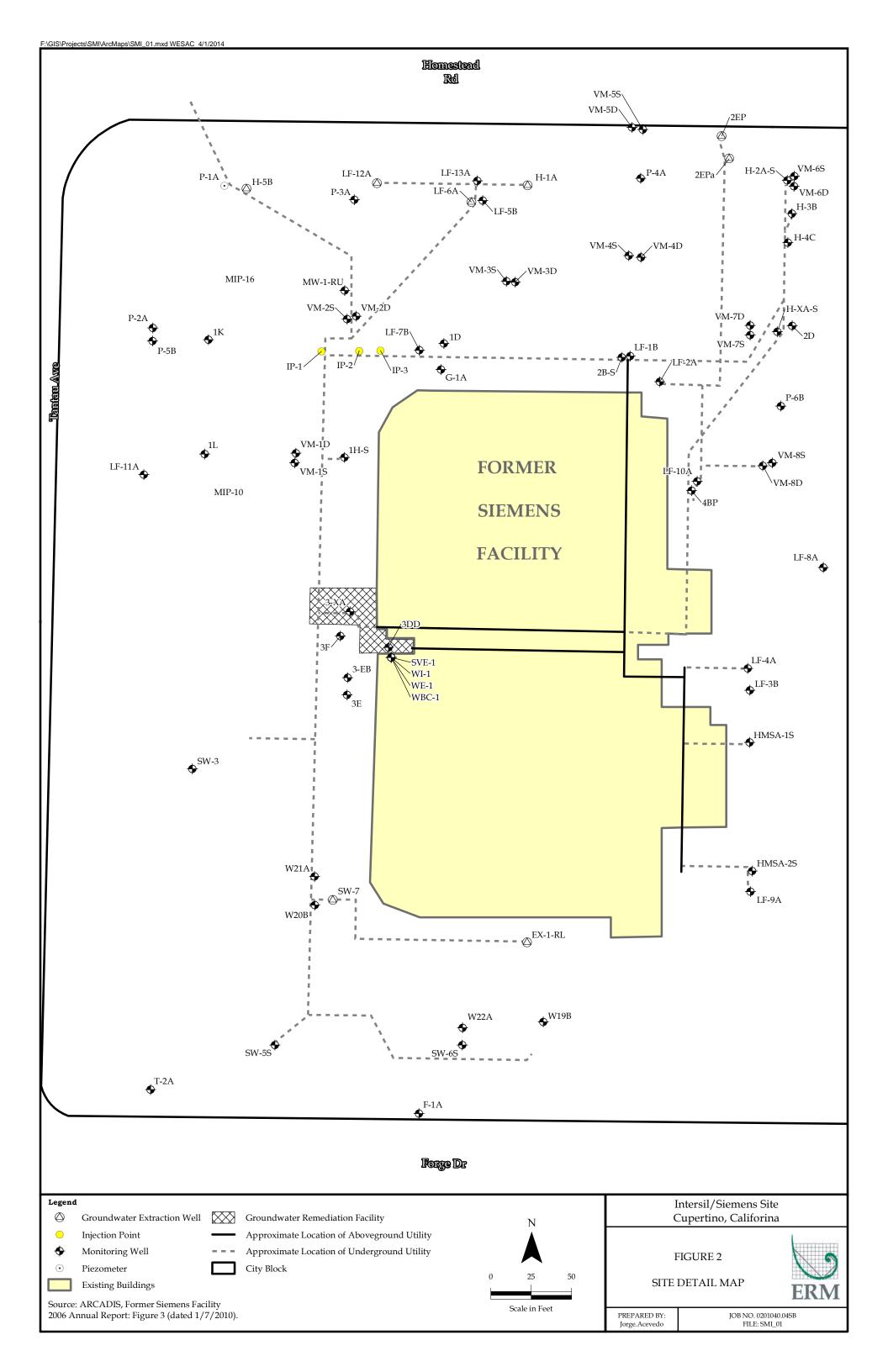
The field QA/QC samples included three field duplicate samples collected simultaneously with each corresponding primary sample using a T-splitter. In addition, Air Toxics analyzed surrogate spike samples, method blank samples, laboratory control samples, and laboratory control sample duplicates, and performed continuous calibration verification to provide internal quality control.

The Quality Assurance Officer reviewed the data and confirmed that the QA/QC procedures outlined in the Work Plan were met. The data generated meet all data quality objectives specified in the *Quality Assurance Project Plan* and considered complete. The complete data quality review is included in Appendix G.

4.0 CONCLUSIONS AND RECOMMENDATION


The concentrations in indoor and outdoor air during 2002, 2007, and 2014 are comparable, and no VOCs were detected above Tier 2 (short-term) or Tier 3 (long-term) screening criteria during any sampling event.


TCE and cis-1,2-DCE are the main COCs detected in groundwater beneath the site. There were no detections of cis-1,2-DCE in indoor air. TCE was detected above the screening level in 15 locations in February 2014, however all detections were below Tier 2 (short-term) or Tier 3 (long-term) screening criteria and pose a low threat to human health and the environment.


Results from indoor air sampling conducted in 2002, 2007, and 2014 consistently report no COC detections in excess of Tier 2 or Tier 3 screening levels. These data confirm there is no unacceptable risk to indoor workers associated with COCs reported in subsurface soil or groundwater. For these reasons, no further vapor intrusion assessment is recommended at the former Siemens facility.

5.0 REFERENCES

- AMEC Geomatrix, Inc. (AMEC) and LFR, Inc. 2009. Five-Year Statues Report for Period January 2005 through June 2009, Intersil/Siemens Site, Cupertino, California. 20 November 2009.
- AMEC. 2012. Work Plan to Evaluate Potential Vapor Intrusion, Intersil/Siemens Site, Indoor Air Study Area, Cupertino, California. 12 February 2012.
- ERM-West, Inc. (ERM). 2014. Revised Third Addendum to Work Plan to Evaluate Potential Vapor Intrusion Intersil/Siemens Site, Indoor Air Study Area Cupertino, California. 14 February 2014.
- ENVIRON International Corporation. 2003. *Indoor Air Quality Letter Report, 19000 Homestead Road and 10950 North Tantau Avenue, Cupertino, California.* 7 January 2003.
- Geomatrix Consultants, Inc. (Geomatrix) and LFR Levine-Fricke. 1995. Five-Year Remedial Action Status Report and Effectiveness Evaluation, Intersil/Siemens Site, Cupertino, California. 31 July 1995.
- Geomatrix and LFR Levine-Fricke. 2000. *Five-Year Status Report for the Period* 1995 through 1999, Intersil/Siemens Site, Cupertino, California. 28 July 2000.
- Geomatrix and LFR Levine-Fricke. 2005. *Five-Year Status Report for the Period* 2000 through 2004, *Intersil/Siemens Site, Cupertino, California*. 28 June 2005.
- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2005. Third Five-Year Review, Intersil/Siemens Superfund Site, Cupertino, Santa Clara County, California. 29 September 2005.
- RWQCB. 2013. Requirement for Vapor Intrusion Evaluation Workplan for 10900 and 10950 North Tantau Avenue, Cupertino, Santa Clara County. 11 December 2013.
- USEPA. 2008. Contract Laboratory Program National Functional Guidelines for Superfund Organic Data Review. June 2008.

Legend

IA1 Breathing Zone Sample Location

[A3] Floor Zone Sample Location

OA1 Ambient Air Zone Sample Location

Figure 3 Indoor and Ambient Air Sample Locations Former Siemens and Intersil Facilities Cupertino, California

Homestead Road

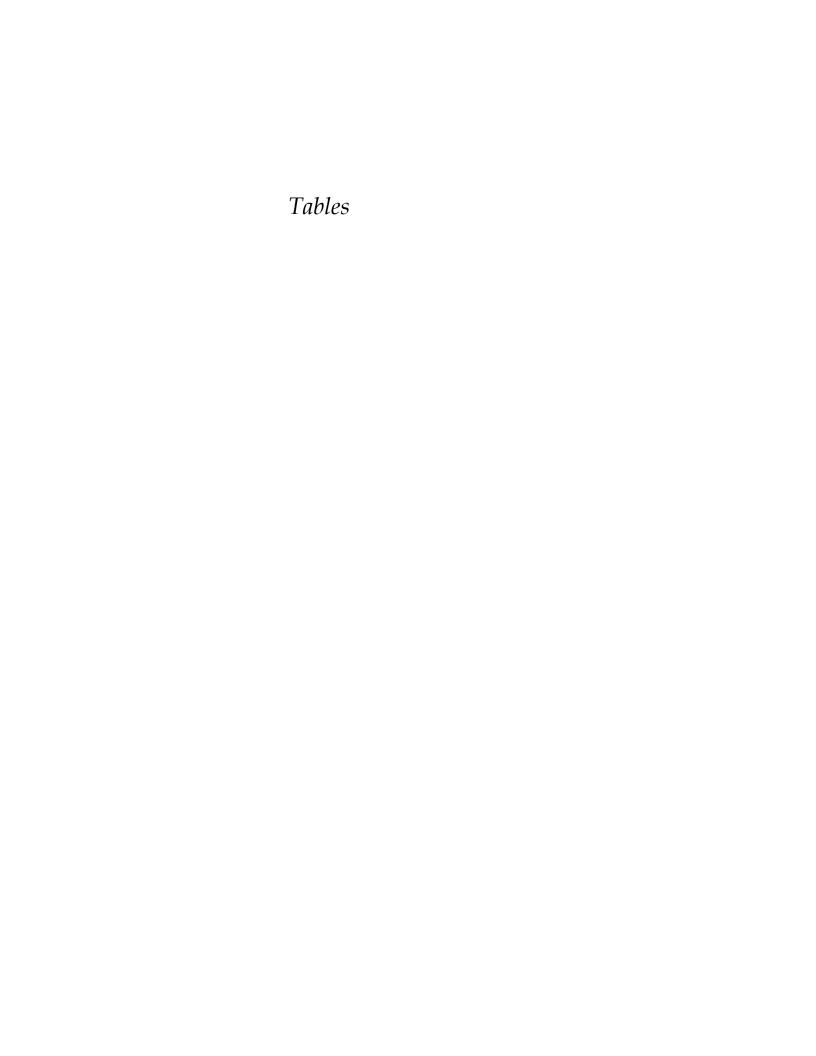


Table 1 Previous Site Sample Results Intersil/Siemens Site, Indoor Air Study Area Cupertino, California

Sample ID	Location ID	Sample Type	Date	Chloroform	1,1-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	Freon 113	1,1,1- TCA	TCE	Toluene	PCE	Viny	l Chloride
2A	10950 Tantau Electrical Room in Lobby - Southwes Side	t Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	2.2	< 1.3	< 1.3	3.1	< 1.3	<	1.3
3A	10950 - Tantau Shipping/Receiving Area - East Side	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	3.6	< 1.6	<	1.6
4A	10950 Tantau - 19000 Homestead Fire Riser/Electrical Room - West Side	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	1.8	< 1.4	< 1.4	3.8	< 1.4	<	1.4
5A	19000 Homestead - Electrical Room/Office Area - North Side	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	4.6	< 1.4	<	1.4
6A	10950 - Tantau Hallway - South Side	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	2.4	< 1.5	<	1.5
7A	19000 Homestead - Fire Riser Room - West Side	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	5.5	< 1.5	<	1.5
1A	Building 19000 - Electrical Room (PG&E Equipment Room)	Indoor Air - Floor	3/14/2007	0.17	< 0.13	< 0.13	< 0.13	< 0.13	0.55	< 0.13	0.16	2.0	0.76	<	0.13
2A	Building 19000 - Shipping and Receiving Area	Indoor Air - Floor	3/14/2007	0.20	< 0.14	< 0.14	< 0.14	< 0.14	0.56	< 0.14	0.14	2.7	0.61	<	0.14
3A	Building 19000 - Security Room (Sprinkler Riser Location)	Indoor Air - Floor	3/14/2007	0.34	< 0.16	< 0.16	< 0.16	< 0.16	0.63	0.38	0.56	2.2	0.80	<	0.16
4A	Building 10950 - Electrical Room	Indoor Air - Floor	3/14/2007	0.22	< 0.13	< 0.13	< 0.13	< 0.13	0.69	0.65	0.33	2.4	1.1	<	0.13
5A	Building 10950 - Stairs Entrance	Indoor Air - Floor	3/14/2007	0.28	< 0.13	< 0.13	< 0.13	< 0.13	0.59	< 0.13	0.16	2.2	0.26	<	0.13
6A	Building 10950 - Elevator Equipment Room	Indoor Air - Floor	3/14/2007	0.25	< 0.13	< 0.13	< 0.13	< 0.13	1.3	1.3	0.28	2.4	0.68	<	0.13
		Maximum Detected (Concentration	0.34	ND	ND	ND	ND	2.2	1.3	0.56	5.5	1.1		ND
	Tier 1	- Comparison to Background/Outdo	or Ambient Air:												
1A	10950 Tantau Roof Top - Center Location (near the building HVAC intake)	Outdoor Air - 6-Hour Integrated	11/25/2002	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	2.5	< 1.4	<	1.4
7A	Building 19050 - Rooftop (HVAC Systems)	Outdoor Air	3/14/2007	0.33	< 0.14	< 0.14	< 0.14	< 0.14	0.58	< 0.14	0.19	1.7	0.16	<	0.14
	Tier 2 – Compa	rison of Short-Term Health Based Sci	reening Criteria:												
		Acute In	halation MRL ¹	NA	NP	NP	790 ²	790	NP	11,000		3,800	1,400		1,300
		Intermediate In	halation MRL ³	NA	NP	79	790 ²	790	NP	3,800		NP	NP		77
		Interim Short-term Response									7				
	Tier 3 – Compa	rison to Long-Term Health Based Sci													
	,	Commercial/Industrial Screening Lev	-	NA	7.7	880	260 ²	260	130,000	22,000	3	22,000	2 ⁶		2.8

Table 1 Previous Site Sample Results Intersil/Siemens Site, Indoor Air Study Area Cupertino, California

Sample ID	Date	Acetone	Benzene	n-Butyl Acetate	2-BUT	CCL	СМ	1,4-DCB	DCM	EB	Freon 11	2-HEX	ISPA	m,p-XYL	4-M-2-P	o-XYL	STY	1,2,4- TCB	Vinyl Acetate
2A	12/25/2002	15	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	9.8	< 1.3	2.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3	< 1.3
3A	12/25/2002	7.7	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	5.1	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6
4A	12/25/2002	16	< 1.4	< 1.4	1.9	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	10	< 1.4	2.7	< 1.4	< 1.4	< 1.4	< 1.4	2.0	< 1.4
5A	12/25/2002	9.8	< 1.4	< 1.4	1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	11	< 1.4	3.6	1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
6A	12/25/2002	13	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	9.3	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
7A	12/25/2002	22	< 1.5	< 1.5	3.9	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	9.9	< 1.5	6.5	1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
1A	3/14/2007	11 m	0.66	0.21	1.5	0.37	0.54	< 0.13	0.34	0.33	1.1	0.23	1.6	1.5	< 0.65	0.50	< 0.13	< 0.13	2.9 m
2A	3/14/2007	12	0.71	0.24	1.4	0.38	0.55	0.39	0.38	0.52	1.1	0.19	2.6	2.6	< 0.70	1.1	0.19	< 0.14	< 1.4
3A	3/14/2007	14	0.77	0.69	1.0	0.38	0.58	< 0.16	0.39	0.45	1.2	0.22	4.6	2.0	0.93	0.74	0.25	0.19	< 1.6
4A	3/14/2007	34	0.73	0.76	2.9	0.41	0.56	< 0.13	0.33	0.43	1.2	0.46	38	1.8	1.0	0.62	0.20	< 0.13	8.5 m
5A	3/14/2007	14	0.69	0.39	1.8	0.41	0.58	0.14	0.35	0.38	1.1	0.33	14	2.0	< 0.65	0.77	0.20	< 0.13	1.6
6A	3/14/2007	18	0.68	0.61	2.1	0.40	0.56	0.14	0.36	0.41	1.3	0.30	12	1.7	0.94	0.59	0.21	< 0.13	3.8
		34	0.77	0.76	3.9	0.41	0.58	0.39	0.39	0.52	11	0.46	38	2.6	1.0	1.1	0.25	2.0	8.5
1A	12/25/2002	6.1	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
7A	3/14/2007	8.5	0.62	< 0.14	1.3	0.39	0.55	0.14	0.36	0.30	1.1	0.19	1.7	1.3	< 0.69	0.44	< 0.14	< 0.14	< 1.4
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1 Previous Site Sample Results Intersil/Siemens Site, Indoor Air Study Area Cupertino, California

Notes:

All concentrations are presented in micrograms per cubic meter ($\mu g/m^3$).

Bolded values indicate compound was detected above method reporting limits.

- 1. MRLs for acute exposures (i.e., exposure durations of 1 to 14 days) for the inhalation pathway (ATSDR, 2011).
- 2. Value published for trans-1,2-DCE is used as a surrogate for cis-1,2-DCE.
- 3. MRLs for intermediate exposures (i.e., exposure durations of >14 to 365 days) for the inhalation pathway (ATSDR, 2011).
- 4. Interim Short-term Response Action Level specified by United States Environmental Protection Agency (EPA) Region 9 (EPA, 2013b). Value is based on a 10-hour workday and a hazard index of 1. Exceedance of this concentration levels triggers mitigation; exceedance of three times this concentration triggers an immediate response.
- 5. Regional Screening Levels (RSLs) for industrial air (EPA, 2013a). Lower of cancer or non-cancer values presented.
- 6. The current RSL for PCE of 47 μg/m³ reflects recent updates to PCE's toxicity criteria by EPA. However, California has not yet adopted these revised criteria. Therefore, the screening level for PCE is based on California toxicity criterion and EPA's methods for estimating exposure.

Abbreviations

2-BUT = 2-Butanone (MEK) CCL = Carbon tetrachloride CM = Chloromethane

1,4-DCB = 1,4-Dichlorobenzene DCM = Methylene chloride

EB = Ethylbenzene

Freon 11 = Trichlorofluoromethane

Freon 113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

2-HEX = 2-Hexanone ISPA = Isopropyl alcohol MRL = Minimal Risk Level m,p-XYL = m,p-Xylenes 4-M-2-P = 4-Methyl-2-pentanone

NA = Not applicable; chloroform is measured as an indicator of the connection between indoor air and sub-slab air and is not considered a chemical of concern for indoor air at this site.

ND = Not detected NP = Not published o-XYL = o-Xylene STY = Styrene

PCE = Tetrachloroethene TCE = Trichloroethene

1,2,4-TCB = 1,2,4-Trichlorobenzene 1,1,1-TCA = 1,1,1-Trichloroethene

Laboratory Qualifiers

m = Matrix interference; results may be biased high.

References

Agency for Toxic Substances & Disease Registry (ATSDR), 2013, Minimal Risk Levels (MRLs) for Hazardous Substances, July: http://www.atsdr.cdc.gov/mrls/mrllist.asp
United States Environmental Protection Agency (EPA), Regions 3, 6, and 9, 2013a, Regional Screening Levels for Chemical Contaminants at Superfund Sites, November: http://www.epa.gov/region9/superfund/prg. EPA, 2013b, Memorandum from Kathleen Salyer of the EPA to Stephen Hill, Chief, Toxic Cleanup Division, California. Regional Quality Control Board, 3 December.

Table 2 Indoor Air and Ambient Air Sample Locations Intersil/Siemens Site, Indoor Air Study Area Cupertino, California

Location ID	Sample Location Name	Room Number	Floor/Breathing Zone		
Indoor Air					
IA1	First Floor Elevator Sample	Homestead Entrance	Breathing Zone		
IA2	Second Floor Elevator Sample	Homestead Entrance	Breathing Zone		
IA3	Woman's Restroom (Floor Drain)	NA	Floor		
IA4	Common Room	Adjacent to 1036	Breathing Zone		
IA5	Office Sample	1035	Breathing Zone		
IA6	EVS Storage Room (Floor Drain)	1094	Floor		
IA7	Cube Sample In Group Room C3	1073	Breathing Zone		
IA8	Office Sample	1068	Breathing Zone		
IA9	Ground Penetration for Building Sprinkler System	195	Floor		
IA10	Staff Lounge Sample (Collect by Sink)	1090	Breathing Zone		
IA11	Public Affairs Storage Room (Floor Cracks)	NA	Floor		
IA12	Ground Penetration for Building Sprinkler System	179	Floor		
IA13	Office Sample (Room 104)	104	Breathing Zone		
IA14	Server Room	NA	Breathing Zone		
IA15	Woman's Restroom Adjacent to Chemical Dependency Waiting Room (Floor Drain)	NA	Floor		
IA16	On Desk outside of Room 138B	138B	Breathing Zone		
IA17	Woman's Restroom Floor (Floor Drain)	NA	Floor		
IA18	Storage Area by Bathroom	125	Breathing Zone		
IA19	Patient Break Room	125	Breathing Zone		
IA20	Chemical Dependence Reception Office	136	Breathing Zone		
IA21	First Floor Elevator Shaft	Tantau Entrance	Breathing Zone		
IA22	Break Room by AED Across from Room 129 (by Sink)	133	Breathing Zone		
IA23	Office Sample	118	Breathing Zone		
Ambient Air					
OA1	Outdoor Air Sample (by Boiler)	NA	Breathing Zone		
OA2	Outdoor Air Sample outside Patient Break Room	NA	Breathing Zone		

Notes:

NA - not available

Table 3 Volatile Organic Compounds Detected in Indoor Air Intersil/Siemens Site, Indoor Air Study Area Cupertino, California

Comple	Location													
Sample ID	ID	Sample Type	Date	Chloroform	1,1-DCA	1,1-DCE	cis-1,2-DCE	trans-1,2-DCE	Freon 113	1,1,1-TCA	TCE	Toluene	PCE	Vinyl Chloride
SMI-IA01-20140216	IA1	Indoor Air - Breathing Zone	2/17/2014	< 0.83	< 0.14	< 0.068	< 0.14	< 0.68	< 1.3	< 0.19	0.26	1.4	< 0.23	< 0.044
SMI-IA02-20140216	IA2	Indoor Air - Breathing Zone	2/17/2014	< 0.77	< 0.13	< 0.063	< 0.12	< 0.63	< 1.2	0.19	0.24	1.5	< 0.21	< 0.040
SMI-IA03-20140216	IA3	Indoor Air - Floor	2/17/2014	< 0.82	< 0.14	< 0.067	< 0.13	< 0.67	< 1.3	< 0.18	0.28	1.7	< 0.23	< 0.043
SMI-IA04-20140216	IA4	Indoor Air - Breathing Zone	2/17/2014	< 0.65	< 0.11	< 0.053	< 0.11	< 0.53	< 1.0	0.16	0.41	1.6	< 0.18	< 0.034
SMI-IA05-20140216	IA5	Indoor Air - Breathing Zone	2/17/2014	< 0.82	< 0.14	< 0.067	< 0.13	< 0.67	< 1.3	0.20	0.45	1.5	< 0.23	< 0.043
SMI-IA06-20140216	IA6	Indoor Air - Floor	2/17/2014	4.7	< 0.16	< 0.078	< 0.16	< 0.78	< 1.5	1.2	< 0.21	1.8	1.1	< 0.050
SMI-IA07-20140216	IA7	Indoor Air - Breathing Zone	2/17/2014	< 0.65	< 0.11	0.056	< 0.11	< 0.53	< 1.0	0.45	< 0.14	1.3	0.20	< 0.034
SMI-IA08-20140216	IA8	Indoor Air - Breathing Zone	2/17/2014	< 0.82	< 0.14	< 0.67	< 0.13	< 0.67	< 1.3	< 0.18	< 0.18	1.1	< 0.23	< 0.430
SMI-IA08D-20140216	IA8 Duplicate	Indoor Air - Breathing Zone	2/17/2014	< 0.79	< 0.13	< 0.064	< 0.13	< 0.64	< 1.2	< 0.18	< 0.17	1.1	< 0.22	< 0.041
SMI-IA09-20140216	IA9	Indoor Air - Floor	2/17/2014	< 0.80	< 0.13	< 0.065	< 0.13	< 0.65	< 1.2	0.50	0.63	1.5	< 0.22	< 0.042
SMI-IA09D-20140216	IA9 Duplicate	Indoor Air - Floor	2/17/2014	< 0.82	< 0.14	< 0.067	< 0.13	< 0.67	< 1.3	0.58	0.62	1.5	< 0.23	< 0.43
SMI-IA10-20140216	IA10	Indoor Air - Breathing Zone	2/17/2014	< 0.96	< 0.16	< 0.078	< 0.16	< 0.78	< 1.5	0.22	< 0.21	1.5	< 0.26	< 0.050
SMI-IA11-20140216	IA11	Indoor Air - Floor	2/17/2014	< 0.69	< 0.11	< 0.056	< 0.11	< 0.56	< 1.1	< 0.15	< 0.15	2.0	< 0.19	< 0.036
SMI-IA12-20140216	IA12	Indoor Air - Floor	2/17/2014	< 0.83	< 0.14	0.70	< 0.14	< 0.68	2.1	6.9	0.64	1.3	0.32	< 0.044
SMI-IA13-20140216	IA13	Indoor Air - Breathing Zone	2/17/2014	< 0.83	< 0.14	1.2	< 0.14	< 0.68	1.9	11	0.39	1.6	< 0.23	0.058
SMI-IA14-20140216	IA14	Indoor Air - Breathing Zone	2/17/2014	1.4	< 0.14	0.34	< 0.14	< 0.68	3.1	4.4	0.28	1.7	0.43	< 0.044
SMI-IA15-20140216	IA15	Indoor Air - Floor	2/17/2014	< 0.65	< 0.11	0.19	< 0.11	< 0.53	1.9	2.4	0.22	1.7	0.37	< 0.034
SMI-IA16-20140216	IA16	Indoor Air - Breathing Zone	2/17/2014	< 0.93	< 0.15	0.11	< 0.15	< 0.76	< 1.5	1.1	< 0.20	1.4	< 0.26	< 0.049
SMI-IA16D-20140216	IA16 Duplicate	Indoor Air - Breathing Zone	2/17/2014	< 0.83	< 0.14	0.11	< 0.14	< 0.68	1.3	1.3	0.20	1.5	0.26	< 0.044
SMI-IA17-20140216	IA17	Indoor Air - Floor	2/17/2014	1.8	< 0.13	0.088	< 0.13	< 0.65	1.2	1.2	0.27	1.5	0.28	< 0.042
SMI-IA18-20140216	IA18	Indoor Air - Breathing Zone	2/17/2014	< 0.85	< 0.14	0.070	< 0.14	< 0.69	< 1.3	0.94	0.24	2.0	< 0.24	< 0.045
SMI-IA19-20140216	IA19	Indoor Air - Breathing Zone	2/17/2014	< 0.80	< 0.13	0.12	< 0.13	< 0.65	< 1.2	1.2	< 0.18	1.3	< 0.22	< 0.042
SMI-IA20-20140216	IA20	Indoor Air - Breathing Zone	2/17/2014	< 0.74	< 0.12	0.16	< 0.12	< 0.60	1.5	1.6	0.17	1.6	0.23	< 0.039
SMI-IA21-20140216	IA21	Indoor Air - Breathing Zone	2/17/2014	< 0.82	< 0.14	0.15	< 0.13	< 0.67	< 1.3	1.5	0.18	1.4	< 0.23	< 0.043
SMI-IA22-20140216	IA22	Indoor Air - Breathing Zone	2/17/2014	< 0.87	< 0.14	0.12	< 0.14	< 0.71	2.8	2.0	< 0.19	1.7	< 0.24	< 0.046
SMI-IA23-20140216	IA23	Indoor Air - Breathing Zone	2/17/2014	< 0.82	< 0.14	0.095	< 0.13	< 0.67	1.6	1.2	< 0.18	1.7	< 0.23	< 0.043
		Maximum Detected Co	oncentration	4.7	ND	1.2	ND	ND	3.1	11	0.64	2.0	1.1	0.058
	Tier 1 – Comp	arison to Background/Outdoo	or Ambient Air:											
SMI-OA1-20140216	OA1	Outdoor Air	2/17/2014		< 0.13	< 0.063	< 0.12	< 0.63	< 1.2	< 0.17	< 0.17	1.2	< 0.21	< 0.040
SMI-OA2-20140216	OA2	Outdoor Air	2/17/2014	< 0.71	< 0.12	< 0.058	< 0.12	< 0.58	< 1.1	< 0.16	< 0.16	1.1	< 0.2	< 0.037
Tier 2	– Comparison of	Short-Term Health Based Scr	eening Criteria:											
		Acute	Inhalation MRL	NA NA	NP	NP	790 ³	790	NP	11,000		3,800	1,400	1,300
		Intermediate	e Inhalation MRL	⁴ NA	NP	79	790 ³	790	NP	3,800		NP	NP	77
		Interim Short-term Respon	nse Action Levels								7			
Tier 3	– Comparison to	Long-Term Health Based Scre	eening Criteria:											
	Com	nercial/Industrial Screening L	evel – Indoor Air '	5 NA	7.7	880	260 ³	260	130,000	22,000	3	22,000	2 7	2.8

Notes:

All concentrations are presented in micrograms per cubic meter ($\mu g/m^3$).

Bolded values indicate compound was detected above method reporting limits.

- 1. Indoor and outdoor/background ambient air samples collected by ERM into individually-certified 6-liter Summa™ canisters fitted with 24-hour flow-controllers and analyzed by Eurofins Air Toxics, Inc. of Folsom, California using EPA Method TO-15 in selective ion mode (SIM).
- 2. MRLs for acute exposures (i.e., exposure durations of 1 to 14 days) for the inhalation pathway (ATSDR, 2011).
- 3. Value published for trans-1,2-DCE is used as a surrogate for cis-1,2-DCE.
- 4. MRLs for intermediate exposures (i.e., exposure durations of >14 to 365 days) for the inhalation pathway (ATSDR, 2011).
- 5. Interim Short-term Response Action Level specified by United States Environmental Protection Agency (EPA) Region 9 (EPA, 2013b). Value is based on a 10-hour workday and a hazard index of 1. Exceedance of this concentration levels triggers mitigation;
- 6. Regional Screening Levels (RSLs) for industrial air (EPA, 2013a). Lower of cancer or non-cancer values presented.
- 7. The current RSL for PCE of 47 µg/m³ reflects recent updates to PCE's toxicity criteria by EPA. However, California has not yet adopted these revised criteria. Therefore, the screening level for PCE is based on California toxicity criteria and EPA's methods for estimating exposure.

Abbreviations

1,1-DCA = 1,1-Dichloroethane	NA = Not applicable; chloroform is measured as an indicator of the connection between indoor air
1,1-DCE = 1,1-Dichloroethene	and sub-slab air and is not considered a chemical of concern for indoor air at this site.
cis-1,2-DCE = cis-1,2-Dichloroethene	NP = Not published
trans-1,2-DCE = trans-1,2-Dichloroethene	TCE = Trichloroethene
Freon 113 = 1,1,2-Trichloro-1,2,2-trifluoroethane	PCE = Tetrachloroethene
MRL = Minimal Risk Level	1,1,1-TCA = 1,1,1-Trichloroethene

References

Agency for Toxic Substances & Disease Registry (ATSDR), 2013, Minimal Risk Levels (MRLs) for Hazardous Substances, July: http://www.atsdr.cdc.gov/mrls/mrllist.asp
United States Environmental Protection Agency (EPA), Regions 3, 6, and 9, 2013a, Regional Screening Levels for Chemical Contaminants at Superfund Sites, November: http://www.epa.gov/region9/superfund/prg.
EPA, 2013b, Memorandum from Kathleen Salyer of the EPA to Stephen Hill, Chief, Toxic Cleanup Division, California. Regional Quality Control Board, 3 December.

Table 4
Comparison of Samples Collected at Ground Penetrations for Sprinkler Systems
Intersil/Siemens Site, Indoor Air Study Area
Cupertino, California

Sample ID	Location ID	Sample Type	Date	Chloroform (μg/m³)	1,1-DCA (μg/m³)	1,1-DCE (μg/m³)	cis-1,2-DCE $(\mu g/m^3)$	trans-1,2-DCE (μg/m³)	Freon 113 $(\mu g/m^3)$	1,1,1-TCA (μg/m³)	TCE $(\mu g/m^3)$	Toluene (μg/m³)	PCE (µg/m³)	Vinyl Chloride (μg/m³)
10950 Tantau - Ground	Penetration for	Building Sprinkler System												
7A	7A	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	5.5	< 1.5	< 1.5
3A	3A	Indoor Air - Floor	3/14/2007	0.34	< 0.16	< 0.16	< 0.16	< 0.16	0.63	0.38	0.56	2.2	0.80	< 0.16
SMI-IA09-20140216	IA9	Indoor Air - Floor	2/17/2014	< 0.80	< 0.13	< 0.065	< 0.13	< 0.65	< 1.2	0.50	0.63	1.5	< 0.22	< 0.042
SMI-IA09D-20140216	IA9 Duplicate	Indoor Air - Floor	2/17/2014	< 0.82	< 0.14	< 0.067	< 0.13	< 0.67	< 1.3	0.58	0.62	1.5	< 0.23	< 0.43
19000 Homestead - Gro	und Penetration	ı for Building Sprinkler Syst	ет											
4A	4A	Indoor Air - Floor - 6-Hour Integrated	11/25/2002	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	1.8	< 1.4	< 1.4	3.8	< 1.4	< 1.4
SMI-IA12-20140216	IA12	Indoor Air - Floor	2/17/2014	< 0.83	< 0.14	0.70	< 0.14	< 0.68	2.1	6.9	0.64	1.3	0.32	< 0.044

Notes:

All concentrations are presented in micrograms per cubic meter ($\mu g/m^3$). Bolded values indicate compound was detected above method reporting limits.

Abbreviations

1,1-DCA = 1,1-Dichloroethane Freon 113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

1,1-DCE = 1,1-Dichloroethene 1,1,1-TCA = 1,1,1-Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene TCE = Trichloroethene trans-1,2-DCE = trans-1,2-Dichloroethene PCE = Tetrachloroethene

Appendix A
Previous Indoor Air
Sampling Documentation

Ms. Linda Simmons
Manager, Real Estate Group
Kaiser Foundation Health Plan, Inc.
1950 Franklin Street, 12th Floor
Oakland, California 94612

Ms. Helen Ku Kaiser Foundation Health Plan, Inc. Western Environmental, Health & Safety Service Hub 100 S. Los Robles, Suite 410 Pasadena, California 91188

Subject: Indoor Air Quality Letter Report

19000 Homestead Road and 10950 North Tantau Avenue, Cupertino, California

Dear Ms. Simmons and Ms. Ku:

At your request, ENVIRON International Corporation (ENVIRON) conducted an indoor air quality (IAQ) assessment and a site visit of the property located at 19000 Homestead Road and 10950 North Tantau Avenue, Cupertino, California, on November 25 and 26, 2002.

SUMMARY

ENVIRON's site visit and IAQ assessment are based on two previous IAQ investigations, which were conducted at the subject buildings by Clayton Group Services, Inc. (Clayton, 2000¹) and ATC Associates, Inc. (ATC, 2002²). The objectives for ENVIRON's site visit and IAQ assessment are as follows:

• Observe and photographically document the on-site groundwater and soil treatment systems (including the exhaust vents) and areas of potential vapor migration pathways (such as visible cracks in the concrete);

¹ Clayton, 2000. Indoor Air Quality Evaluation of Volatile Organic Compounds at 19000 Homestead Road and 10950 North Tantau Avenue, Cupertino, California, Clayton Group Services, Inc., August.

² ATC, 2002. Limited Indoor Air Quality Investigation, ATC Associates, Inc., August.

- Collect six air samples near the potential vapor migration pathways inside the two buildings and one sample outdoors as the background using the same method utilized by Clayton and ATC for comparison and confirmation purposes; and
- Collect one instantaneous air sample from the soil vapor extraction system's emission stack.

This letter report presents ENVIRON's observations during the site visit, the air sampling and analytical methods, and the results of the eight air samples collected. In summary, the indoor air concentrations within the two buildings indicated acceptable air quality and are not associated with the residual subsurface contaminants beneath the site.

BACKGROUND AND SITE VISIT

Description of Buildings

The buildings located at 19000 Homestead Road and 10950 North Tantau Avenue were constructed in approximately 1968. Each building is two stories high and constructed on a common concrete slab at grade where the first floor is a contiguous floor. The buildings' second floors are physically separated. The buildings are oriented north-south on the property where the northern building (19000 Homestead Road) and the southern building (10950 Tantau Avenue) have a total square footage of 49,550 square feet and 52,230 square feet, respectively.

At the time of ENVIRON's site visit, the current tenant, Jamcracker, was vacating the site. In some areas, the building was storing office computer equipment and furniture. Other office areas had standard office cubical configuration or were vacant. The first floors of both buildings were carpeted and the bathrooms had tile flooring. There was no evidence of floor cracks in these areas. The shipping and receiving area in the south-eastern portion of the Tantau building was concrete and had minor cracking (see Attachment A). There were no obvious odors present within the buildings.

There is a security guard on duty for the buildings 24 hours per day and 7 days per week. The guard is stationed at the Tantau Building lobby and performs routine inspections of the building interiors and grounds.

Description of On-Site Groundwater and Soil Treatment Systems

The subject buildings are located on the property that has been historically impacted by subsurface (both soil and groundwater) volatile organic compound (VOC) contamination. As a result, the property is part of a National Priority List site or Superfund site. The site is identified as the Intersil/Siemens site.

The groundwater and soil treatment systems are located on the exterior-western portion of the buildings where the two buildings join (see Attachment B). The treatment units were within a secured enclosure that was only accessible from the exterior of the buildings. The associated piping runs around the buildings to a network of groundwater wells.

Mr. Dale Rogers, an employee of Levine-Fricke, met with ENVIRON personnel on November 26, 2002. Mr. Rogers' responsibilities include maintenance and operation of the treatment systems. He provided a tour and related information to ENVIRON regarding the on-site treatment systems.

There are a total of three separate treatment units on the property, all of which are located within the secured enclosure. The first system is an air stripper unit, which is no longer operational. The air-stripper emission stack is located on the west side of the roof on building 10950 N. Tantau Avenue. The stack diameter is approximately 8 to 10 inches. The air stripper unit has been replaced by a carbon bed treatment system (second system). This system collects contaminated groundwater that flows through the carbon beds. The carbon beds remove the VOCs. The abated groundwater is discharged to the storm drain system under a NPDES permit. The third system is a soil-vapor extraction system. This system has a 35 cubic-feet-per-minute (cfm) blower, which pulls air through a network of pipes. It appears that the soil vapors are discharged directly into the atmosphere. The emission stack is adjacent to the abandoned air stripper stack. The stack diameter is approximately 3 to 4 inches. The soil vapor extraction system operation time is from 4 p.m. to 7 a.m. the following morning, seven days a week.

SAMPLING PARAMETERS

Building Ventilation

In order to simulate the worst-case indoor VOC concentrations, the sampling occurred on a Monday morning following a weekend when the heating, ventilation, and air-conditioning system (HVAC) activity was reduced for weekend conservation. The HVAC operated for three hours per day during the weekend as opposed to the 8 to 10 hours of regular weekday operation. The period of HVAC reduction is from Friday evening until Monday morning. Some HVAC activity is needed for the weekend since the buildings are occupied by a security guard 24 hours a day. The reduced HVAC activity allows for the build-up of VOC concentrations inside the buildings compared to the normal operating schedule. The HVAC systems utilize Freon 22 (chlorodifluoromethane).

Weather and Wind Direction

The local high temperature was 64 degrees F, with clear skies. The relative humidity was 28%. The early morning was calm with winds from the north-northwest at 22 mph, gusting to 29 mph.

Sampling Method, Locations and Times

A total of eight air samples were collected by ENVIRON, six of which were collected inside the two buildings and one collected outdoors as the ambient air background measurement. The indoor air sampling locations were limited to the first floor and to those areas that had floor penetrations and/or cracks such as fire riser rooms, electrical rooms and the shipping/receiving area. As stated earlier in this report, the first floor was contiguous between the two buildings. The ambient background sample was collected on the 10950 Tantau building rooftop in an area away from potential air emission sources. The seven air samples were collected over a 6-hour sampling period from approximately 7:40 a.m. to 2:20 p.m. on November 25, 2002. The eighth sample was collected from the soil-vapor extraction system. This final sample was a grab sample and was collected on November 26, 2002 at 11:15 a.m. when Levine-Fricke was present. Figures 1 and 2 show the sample locations.

The seven integrated air-samples were collected using Summa canisters with 6-hour flow controllers. The indoor Summa canisters were placed on the floor. The outdoor Summa canister was placed in the center of the 10950 Tantau building rooftop. The sample inlet height is about 24 inches. The grab sample was collected using a Summa canister that was connected to a sample port located within the exhaust line of the soil-vapor extraction system. Since the soil-vapor extraction system was not operating at that time, Mr. Rogers manually activated the system by turning on the blower. The system was allowed to purge for 5 to 10 minutes prior to collecting the grab sample. The location of the air samples with dates and times are provided in Table 1. Each sample location was also recorded using a digital camera (see Attachment A).

ANALYTICAL METHODS

Upon completion of the sampling, the Summa canisters were shipped overnight using Federal Express to Columbia Analytical Services, Inc., Simi Valley, California for analyses. ENVIRON's standard chain-of-custody procedures were followed. The air samples were then analyzed using EPA Method TO-15, which utilizes gas chromatograph /mass spectrometry (GC/MS). Isopropyl alcohol, 1, 2, 4-TCB, and n-butyl acetate were added to the laboratory's standard list of 43 analytes for Method TO-15 in order to capture the "marker" chemicals listed in Clayton's report (Clayton, 2000). The analytical reports, including the laboratory quality control samples, are provided in Attachment C.

RESULTS AND DISCUSSIONS

The analytical results for detected VOCs are presented in Tables 2 and 3. As shown in Table 2, the indoor concentrations are slightly higher than the outdoor concentrations, which is to be expected, and are all in the ppb or sub-ppb levels. In addition, the key marker chemicals trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) were not detected in these samples. On the other hand,

Ms. Simmons and Ms. Ku

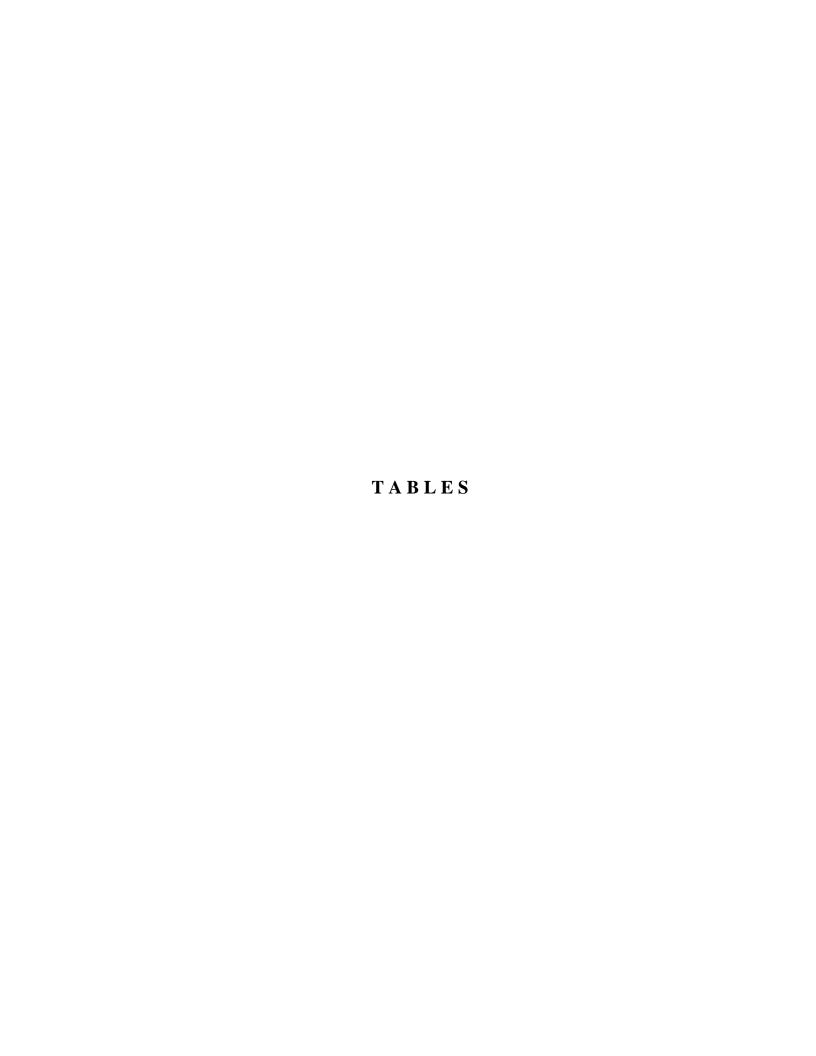
January 7, 2003

several marker chemicals were detected in the grab sample from the soil vapor extraction system stack (Table 3,) including TCE, 1,1,1-TCA, 1,1-dichloroethene, and cis-1,2-dichloroethene.

Based on the results presented in this letter report, there is no evidence suggesting that the indoor air quality in the two subject buildings is impacted by the residual contaminants located beneath the site.

After your review of this document, please feel free to contact Yi Tian at 949-798-3624 or Susan Wilson at 408-727-8554 if you have any questions or comments. We appreciate the opportunity of assisting you in this matter.

Very truly yours,


Susan Wilson Yi Tian, CIH, QEP Michael Smylie Senior Manager Manager Principal

Attachments: Tables 1 and 2

Figures 1 and 2

Attachments A through C

 $P:\label{eq:local_problem} P:\label{eq:local_problem} P:\label{eq:local_problem} AQ\ensuremath{\mbox{Final IAQ}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{Colored}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{Report Kaiser}}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath{\mbox{GeV}}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensuremath{\mbox{GeV}\ensuremath}\ensuremath}\ensure$

Table 1. Summary of Air Sampling Locations, Dates, and Durations

Sample Number	Sample Type	Sample Date	Sample Time (Military Hours)	Sample Location
1A	6-Hr	12/25/02	0740-1400	10950 Tantau Roof Top - Center Location (near the building HVAC intake)
2A	6-Hr	12/25/02	0755-1400	10950 Tantau Electrical Room in Lobby - Southwest Side
3A	6-Hr	12/25/02	0758-1400	10950 Tantau Shipping/Receiving Area - East Side
4A	6-Hr	12/25/02	0805-1406	10950 Tantau-19000 Homestead Fire Riser/Electrical Room - West Side
5A	6-Hr	12/25/02	0815-1415	19000 Homestead –Electrical Room/Office area – North Side
6A	6-Hr	12/25/02	0820-1420	10950 Tantau Hallway – South Side
7A	6-Hr	12/25/02	0825-1425	19000 Homestead – Fire Riser Room – West Side
8A	Grab	12/26/02	1115	Soil Vapor Extraction Emission Port- Treatment System Area

Table 2. Volatile Organic Compound Concentrations - 6-Hour Integrated Sample

Location Sampling ID	Outdoor 1A	Indoor 2A	Indoor 3A	Indoor 4A	Indoor 5A	Indoor 6A	Indoor 7A	Outdoor 1A	Indoor 2A	Indoor 3A	Indoor 4A	Indoor 5A	Indoor 6A	Indoor 7A
Analyte				μg/m³		-	-				ppbV	-	-	
1,2,4-Trichlorobenzene	<1.4	<1.3	<1.6	2.00	<1.4	<1.5	<1.5	<0.19	< 0.18	< 0.22	0.27	<0.18	< 0.20	<0.20
2-Butanone (MEK)	<1.4	<1.3	<1.6	1.90	1.50	<1.5	3.90	<0.47	< 0.44	< 0.55	0.65	0.52	< 0.51	1.30
Acetone	6.10	15.00	7.70	16.00	9.80	13.00	22.00	2.60	6.30	3.20	6.60	4.10	5.60	9.30
Isopropyl Alcohol	<1.4	2.30	<1.6	2.70	3.60	<1.5	6.50	< 0.57	0.93	<0.66	1.10	1.40	< 0.61	2.60
m,p-Xylenes	<1.4	<1.3	<1.6	<1.4	1.60	<1.5	1.50	< 0.32	< 0.30	<0.37	< 0.32	0.38	< 0.35	0.35
Toluene	2.50	3.10	3.60	3.80	4.60	2.40	5.50	0.68	0.83	0.97	1.00	1.20	0.64	1.50
Trichlorofluoromethane	1.60	9.80	5.10	10.00	11.00	9.30	9.90	0.28	1.70	0.91	1.80	2.00	1.70	1.80
(Freon 11)														
Trichlorotrifluoroethane	<1.4	2.20	<1.6	1.80	<1.4	<1.5	<1.5	<0.18	0.29	< 0.21	0.24	<0.18	< 0.20	<0.20

Table 3. Volatile Organic Compound Concentrations - Grab Sample

Location Sampling ID	Soil Vapor 8A	Soil Vapor 8A
Analyte	μg/m³	ppbV
1,1,1-Trichloroethane	1,700	310
1,1-Dichloroethene	350	88
cis-1,2-Dichloroethene	4,000	1,000
Trichloroethene	47,000	8,700
Trichlorotrifluoroethane	810	110

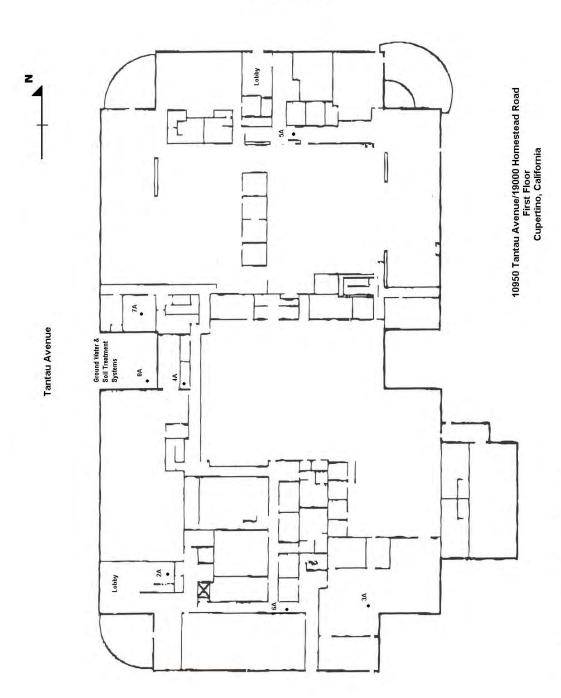
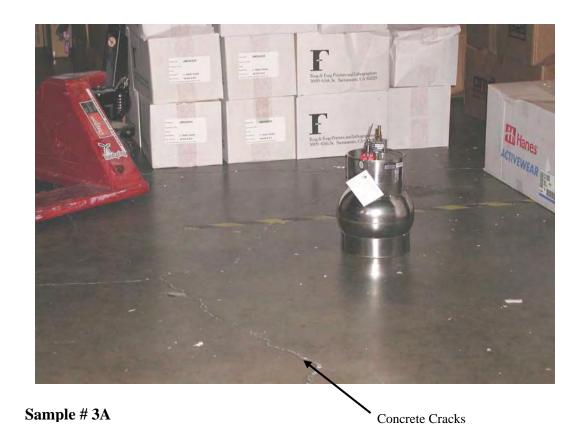


Figure 1. Site Map with Air Sample Locations

Figure 2. 10950 Tantau Roof Top and Sample Location

ATTACHMENT A


Photographs of Sampling Locations

Sample # 1A

Sample # 2A

Sample # 4A

Sample #5

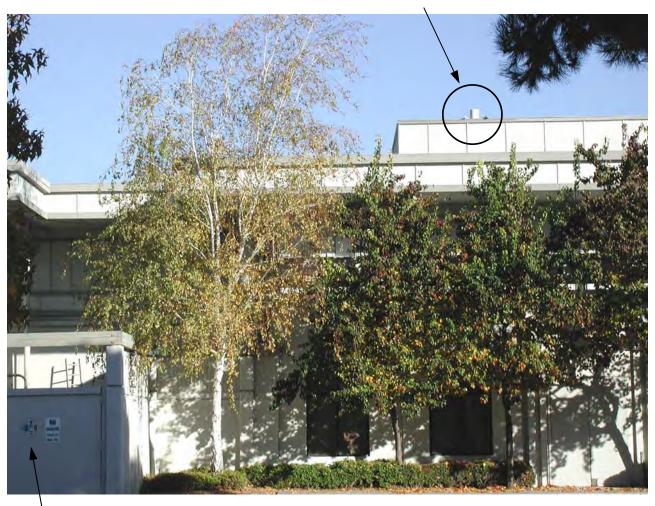
Sample # 6A

Sample # 7A

Sample # 8A

ATTACHMENT B

Photographs of Remediation Systems


Photo #1

The ground water and soil vapor treatment systems are located on the Tantau Avenue side of the building (west facing). The left gate contains control systems and storage. The right gate contains the ground water and soil vapor treatment systems. There are three treatment systems on-site associated with the ground water and soil contamination. The first treatment system is the ground water air stripper which has not been in use for over 6-months. The second is the carbon absorption ground water treatment system which has replaced the air stripper. The carbon absorption system is a liquid pass-through system with no air emission source (water discharges only). The third is the soil vapor treatment system which has a small blower (35 cfm) that only operates from 4 pm to 7am. Emission points for the ground water air stripper (abandoned) and the soil vapor extraction system are located on the roof to the right (see Photo #3). Also, note the buildings are contiguous on the first floor. There is a slight physical separation between the "two buildings" of the second floor.

Left gate to the ground/soil treatment systems

Photo #2

Right gate to the ground water/soil treatment systems

The larger stack (8 to 10 inch diameter) is the old ground water air stripper stack

The emission bent stack (3 to 4 inch diameter) is the soil vapor emission stack

Photo #4

Note: The closest HVAC intake is approximately 20 to 25 feet to the east of the emission stacks (refer to Sample Photo 1A in Appendix A which shows intake of the HVAC system)

The abandoned air stripper stacks with manifold.

The carbon absorption ground water treatment system (the carbon beds are the blue cylinders).

Photo #5

Abandoned air strippers stacks

The soil vapor recovery outlet which leads to the roof emission stack.

Photo #6

Grab sample location

Photo #7

This is a close-up photo of the soil vapor recovery outlet. The white tubing is connected to the emission sampling point. This pipe leads directly to the roof stack. A grab sample using a Summa canister was taken from this point on November 26, 2002 while the blower was running. The blower was allowed to run for about five to ten minutes to purge the pipe prior to the grab sample.

ATTACHMENT C

Laboratory Analytical Reports

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 1A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-001

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00245

Pi 1 = -1.7 Pf 1 = 3.5

D.F. = 1.40

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.4	ND	0.68	
75-01-4	Vinyl Chloride	ND	1.4	ND	0.55	
74-83-9	Bromomethane	ND	1.4	ND	0.36	
75-00-3	Chloroethane	ND	1.4	ND	0.53	
67-64-1	Acetone	6.1	1.4	2.6	0.59	
75-69-4	Trichlorofluoromethane	1.6	1.4	0.28	0.25	
67-63-0	Isopropyl Alcohol	ND	1.4	ND	0.57	
75-35-4	1,1-Dichloroethene	ND	1.4	ND	0.35	
75-09-2	Methylene chloride	ND	1.4	ND	0.40	
76-13-1	Trichlorotrifluoroethane	ND	1.4	ND	0.18	
75-15-0	Carbon Disulfide	ND	1.4	ND	0.45	
156-60-5	trans-1,2-Dichloroethene	ND	1.4	ND	0.35	
75-34-3	1,1-Dichloroethane	ND	1.4	ND	0.35	
1634-04-4	Methyl tert-Butyl Ether	ND	1.4	ND	0.39	
108-05-4	Vinyl Acetate	ND	1.4	ND	0.40	
78-93-3	2-Butanone (MEK)	ND	1.4	ND	0.47	
156-59-2	cis-1,2-Dichloroethene	ND	1.4	ND	0.35	
67-66-3	Chloroform	ND	1.4	ND	0.29	
107-06-2	1,2-Dichloroethane	ND	1.4	ND	0.35	
71-55-6	1,1,1-Trichloroethane	ND	1.4	ND	0.26	
71-43-2	Benzene	ND	1.4	ND	0.44	
56-23-5	Carbon Tetrachloride	ND	1.4	ND	0.22	
78-87-5	1,2-Dichloropropane	ND	1.4	ND	0.30	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTICATISTRVICES, INC.	Date:
	T. 17

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 1A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-001

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00245

Pi 1 = -1.7 Pf 1 = 3.5

D.F. = 1.40

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.4	ND	0.21	
79-01-6	Trichloroethene	ND	1.4	ND	0.26	
10061-01-5	cis-1,3-Dichloropropene	ND	1.4	ND	0.31	
108-10-1	4-Methyl-2-pentanone	ND	1.4	ND	0.34	
10061-02-6	trans-1,3-Dichloropropene	ND	1.4	ND	0.31	
79-00-5	1,1,2-Trichloroethane	ND	1.4	ND	0.26	
108-88-3	Toluene	2.5	1.4	0.68	0.37	
591-78-6	2-Hexanone	ND	1.4	ND	0.34	
124-48-1	Dibromochloromethane	ND	1.4	ND	0.16	
106-93-4	1,2-Dibromoethane	ND	1.4	ND	0.18	
123-86-4	n-Butyl Acetate	ND	1.4	ND	0.29	
127-18-4	Tetrachloroethene	ND	1.4	ND	0.21	
108-90-7	Chlorobenzene	ND	1.4	ND	0.30	
100-41-4	Ethylbenzene	ND	1.4	ND	0.32	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.4	ND	0.32	
75-25-2	Bromoform	ND	1.4	ND	0.14	
100-42-5	Styrene	ND	1.4	ND	0.33	
95-47-6	o-Xylene	ND	1.4	ND	0.32	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.4	ND	0.20	
541-73-1	1,3-Dichlorobenzene	ND	1.4	ND	0.23	
106-46-7	1,4-Dichlorobenzene	ND	1.4	ND	0.23	
95-50-1	1,2-Dichlorobenzene	ND	1.4	ND	0.23	
120-82-1	1,2,4-Trichlorobenzene	ND	1.4	ND	0.19	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
		Page No.:

Copy of P2202349.xls - Sample

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 2A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-002

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00042

Pi 1 = -0.8 Pf 1 = 3.5

D.F. = 1.31

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.3	ND	0.63	
75-01-4	Vinyl Chloride	ND	1.3	ND	0.51	
74-83-9	Bromomethane	ND	1.3	ND	0.34	
75-00-3	Chloroethane	ND	1.3	ND	0.50	
67-64-1	Acetone	15	1.3	6.3	0.55	
75-69-4	Trichlorofluoromethane	9.8	1.3	1.7	0.23	
67-63-0	Isopropyl Alcohol	2.3	1.3	0.93	0.53	
75-35-4	1,1-Dichloroethene	ND	1.3	ND	0.33	
75-09-2	Methylene chloride	ND	1.3	ND	0.38	
76-13-1	Trichlorotrifluoroethane	2.2	1.3	0.29	0.17	
75-15-0	Carbon Disulfide	ND	1.3	ND	0.42	
156-60-5	trans-1,2-Dichloroethene	ND	1.3	ND	0.33	
75-34-3	1,1-Dichloroethane	ND	1.3	ND	0.32	
1634-04-4	Methyl tert-Butyl Ether	ND	1.3	ND	0.36	
108-05-4	Vinyl Acetate	ND	1.3	ND	0.37	
78-93-3	2-Butanone (MEK)	ND	1.3	ND	0.44	
156-59-2	cis-1,2-Dichloroethene	ND	1.3	ND	0.33	
67-66-3	Chloroform	ND	1.3	ND	0.27	
107-06-2	1,2-Dichloroethane	ND	1.3	ND	0.32	
71-55-6	1,1,1-Trichloroethane	ND	1.3	ND	0.24	
71-43-2	Benzene	ND	1.3	ND	0.41	
56-23-5	Carbon Tetrachloride	ND	1.3	ND	0.21	
78-87-5	1,2-Dichloropropane	ND	1.3	ND	0.28	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTIVATESTRVICES, INC.	_Date:_		
·		_	

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 2A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-002

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00042

Copy of P2202349.xls - Sample (2)

Pi 1 = -0.8 Pf 1 = 3.5

D.F. = 1.31

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.3	ND	0.20	
79-01-6	Trichloroethene	ND	1.3	ND	0.24	
10061-01-5	cis-1,3-Dichloropropene	ND	1.3	ND	0.29	
108-10-1	4-Methyl-2-pentanone	ND	1.3	ND	0.32	
10061-02-6	trans-1,3-Dichloropropene	ND	1.3	ND	0.29	
79-00-5	1,1,2-Trichloroethane	ND	1.3	ND	0.24	
108-88-3	Toluene	3.1	1.3	0.83	0.35	
591-78-6	2-Hexanone	ND	1.3	ND	0.32	
124-48-1	Dibromochloromethane	ND	1.3	ND	0.15	
106-93-4	1,2-Dibromoethane	ND	1.3	ND	0.17	
123-86-4	n-Butyl Acetate	ND	1.3	ND	0.28	
127-18-4	Tetrachloroethene	ND	1.3	ND	0.19	
108-90-7	Chlorobenzene	ND	1.3	ND	0.28	
100-41-4	Ethylbenzene	ND	1.3	ND	0.30	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.3	ND	0.30	
75-25-2	Bromoform	ND	1.3	ND	0.13	
100-42-5	Styrene	ND	1.3	ND	0.31	
95-47-6	o-Xylene	ND	1.3	ND	0.30	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.3	ND	0.19	
541-73-1	1,3-Dichlorobenzene	ND	1.3	ND	0.22	
106-46-7	1,4-Dichlorobenzene	ND	1.3	ND	0.22	
95-50-1	1,2-Dichlorobenzene	ND	1.3	ND	0.22	
120-82-1	1,2,4-Trichlorobenzene	ND	1.3	ND	0.18	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:	
		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 3A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-003

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00004

Pi 1 = -3.4 Pf 1 = 3.5

D.F. = 1.61

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.6	ND	0.78	
75-01-4	Vinyl Chloride	ND	1.6	ND	0.63	
74-83-9	Bromomethane	ND	1.6	ND	0.41	
75-00-3	Chloroethane	ND	1.6	ND	0.61	
67-64-1	Acetone	7.7	1.6	3.2	0.68	
75-69-4	Trichlorofluoromethane	5.1	1.6	0.91	0.29	
67-63-0	Isopropyl Alcohol	ND	1.6	ND	0.66	
75-35-4	1,1-Dichloroethene	ND	1.6	ND	0.41	
75-09-2	Methylene chloride	ND	1.6	ND	0.46	
76-13-1	Trichlorotrifluoroethane	ND	1.6	ND	0.21	
75-15-0	Carbon Disulfide	ND	1.6	ND	0.52	
156-60-5	trans-1,2-Dichloroethene	ND	1.6	ND	0.41	
75-34-3	1,1-Dichloroethane	ND	1.6	ND	0.40	
1634-04-4	Methyl tert-Butyl Ether	ND	1.6	ND	0.45	
108-05-4	Vinyl Acetate	ND	1.6	ND	0.46	
78-93-3	2-Butanone (MEK)	ND	1.6	ND	0.55	
156-59-2	cis-1,2-Dichloroethene	ND	1.6	ND	0.41	
67-66-3	Chloroform	ND	1.6	ND	0.33	
107-06-2	1,2-Dichloroethane	ND	1.6	ND	0.40	
71-55-6	1,1,1-Trichloroethane	ND	1.6	ND	0.30	
71-43-2	Benzene	ND	1.6	ND	0.50	
56-23-5	Carbon Tetrachloride	ND	1.6	ND	0.26	
78-87-5	1,2-Dichloropropane	ND	1.6	ND	0.35	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTICATISTRY	VICES, INC.	_Date:

Page 2 of 2

Client: Environ International Corporation

Client Sample ID:3ACAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P2202349-003

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00004

Copy of P2202349.xls - Sample (3)

Pi 1 = -3.4 Pf 1 = 3.5

D.F. = 1.61

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.6	ND	0.24	
79-01-6	Trichloroethene	ND	1.6	ND	0.30	
10061-01-5	cis-1,3-Dichloropropene	ND	1.6	ND	0.35	
108-10-1	4-Methyl-2-pentanone	ND	1.6	ND	0.39	
10061-02-6	trans-1,3-Dichloropropene	ND	1.6	ND	0.35	
79-00-5	1,1,2-Trichloroethane	ND	1.6	ND	0.30	
108-88-3	Toluene	3.6	1.6	0.97	0.43	
591-78-6	2-Hexanone	ND	1.6	ND	0.39	
124-48-1	Dibromochloromethane	ND	1.6	ND	0.19	
106-93-4	1,2-Dibromoethane	ND	1.6	ND	0.21	
123-86-4	n-Butyl Acetate	ND	1.6	ND	0.34	
127-18-4	Tetrachloroethene	ND	1.6	ND	0.24	
108-90-7	Chlorobenzene	ND	1.6	ND	0.35	
100-41-4	Ethylbenzene	ND	1.6	ND	0.37	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.6	ND	0.37	
75-25-2	Bromoform	ND	1.6	ND	0.16	
100-42-5	Styrene	ND	1.6	ND	0.38	
95-47-6	o-Xylene	ND	1.6	ND	0.37	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.6	ND	0.23	
541-73-1	1,3-Dichlorobenzene	ND	1.6	ND	0.27	
106-46-7	1,4-Dichlorobenzene	ND	1.6	ND	0.27	
95-50-1	1,2-Dichlorobenzene	ND	1.6	ND	0.27	
120-82-1	1,2,4-Trichlorobenzene	ND	1.6	ND	0.22	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:	
		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID:4ACAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P2202349-004

Test Code: EPA TO-15 Date Collected: 11/25/02
Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00225

Pi 1 = -1.6 Pf 1 = 3.5

D.F. = 1.39

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.4	ND	0.67	
75-01-4	Vinyl Chloride	ND	1.4	ND	0.54	
74-83-9	Bromomethane	ND	1.4	ND	0.36	
75-00-3	Chloroethane	ND	1.4	ND	0.53	
67-64-1	Acetone	16	1.4	6.6	0.59	
75-69-4	Trichlorofluoromethane	10	1.4	1.8	0.25	
67-63-0	Isopropyl Alcohol	2.7	1.4	1.1	0.57	
75-35-4	1,1-Dichloroethene	ND	1.4	ND	0.35	
75-09-2	Methylene chloride	ND	1.4	ND	0.40	
76-13-1	Trichlorotrifluoroethane	1.8	1.4	0.24	0.18	
75-15-0	Carbon Disulfide	ND	1.4	ND	0.45	
156-60-5	trans-1,2-Dichloroethene	ND	1.4	ND	0.35	
75-34-3	1,1-Dichloroethane	ND	1.4	ND	0.34	
1634-04-4	Methyl tert-Butyl Ether	ND	1.4	ND	0.39	
108-05-4	Vinyl Acetate	ND	1.4	ND	0.39	
78-93-3	2-Butanone (MEK)	1.9	1.4	0.65	0.47	
156-59-2	cis-1,2-Dichloroethene	ND	1.4	ND	0.35	
67-66-3	Chloroform	ND	1.4	ND	0.28	
107-06-2	1,2-Dichloroethane	ND	1.4	ND	0.34	
71-55-6	1,1,1-Trichloroethane	ND	1.4	ND	0.25	
71-43-2	Benzene	ND	1.4	ND	0.44	
56-23-5	Carbon Tetrachloride	ND	1.4	ND	0.22	
78-87-5	1,2-Dichloropropane	ND	1.4	ND	0.30	

 $ND = Compound \ was \ analyzed \ for, \ but \ not \ detected \ above \ the \ \textbf{laboratory reporting limit}.$

COLUMBIA ANALYTIVATESTRVICES, INC.	_Date:_		
·		_	

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 4A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-004

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00225

Pi 1 = -1.6 Pf 1 = 3.5

D.F. = 1.39

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.4	ND	0.21	
79-01-6	Trichloroethene	ND	1.4	ND	0.26	
10061-01-5	cis-1,3-Dichloropropene	ND	1.4	ND	0.31	
108-10-1	4-Methyl-2-pentanone	ND	1.4	ND	0.34	
10061-02-6	trans-1,3-Dichloropropene	ND	1.4	ND	0.31	
79-00-5	1,1,2-Trichloroethane	ND	1.4	ND	0.25	
108-88-3	Toluene	3.8	1.4	1.0	0.37	
591-78-6	2-Hexanone	ND	1.4	ND	0.34	
124-48-1	Dibromochloromethane	ND	1.4	ND	0.16	
106-93-4	1,2-Dibromoethane	ND	1.4	ND	0.18	
123-86-4	n-Butyl Acetate	ND	1.4	ND	0.29	
127-18-4	Tetrachloroethene	ND	1.4	ND	0.21	
108-90-7	Chlorobenzene	ND	1.4	ND	0.30	
100-41-4	Ethylbenzene	ND	1.4	ND	0.32	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.4	ND	0.32	
75-25-2	Bromoform	ND	1.4	ND	0.13	
100-42-5	Styrene	ND	1.4	ND	0.33	
95-47-6	o-Xylene	ND	1.4	ND	0.32	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.4	ND	0.20	
541-73-1	1,3-Dichlorobenzene	ND	1.4	ND	0.23	
106-46-7	1,4-Dichlorobenzene	ND	1.4	ND	0.23	
95-50-1	1,2-Dichlorobenzene	ND	1.4	ND	0.23	
120-82-1	1,2,4-Trichlorobenzene	2.0	1.4	0.27	0.19	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
		Page No.:

Copy of P2202349.xls - Sample (4)

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 5A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-005

Test Code: EPA TO-15 Date Collected: 11/25/02
Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00115

Pi 1 = -1.4 Pf 1 = 3.5

D.F. = 1.37

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.4	ND	0.66	
75-01-4	Vinyl Chloride	ND	1.4	ND	0.54	
74-83-9	Bromomethane	ND	1.4	ND	0.35	
75-00-3	Chloroethane	ND	1.4	ND	0.52	
67-64-1	Acetone	9.8	1.4	4.1	0.58	
75-69-4	Trichlorofluoromethane	11	1.4	2.0	0.24	
67-63-0	Isopropyl Alcohol	3.6	1.4	1.4	0.56	
75-35-4	1,1-Dichloroethene	ND	1.4	ND	0.35	
75-09-2	Methylene chloride	ND	1.4	ND	0.39	
76-13-1	Trichlorotrifluoroethane	ND	1.4	ND	0.18	
75-15-0	Carbon Disulfide	ND	1.4	ND	0.44	
156-60-5	trans-1,2-Dichloroethene	ND	1.4	ND	0.35	
75-34-3	1,1-Dichloroethane	ND	1.4	ND	0.34	
1634-04-4	Methyl tert-Butyl Ether	ND	1.4	ND	0.38	
108-05-4	Vinyl Acetate	ND	1.4	ND	0.39	
78-93-3	2-Butanone (MEK)	1.5	1.4	0.52	0.46	
156-59-2	cis-1,2-Dichloroethene	ND	1.4	ND	0.35	
67-66-3	Chloroform	ND	1.4	ND	0.28	
107-06-2	1,2-Dichloroethane	ND	1.4	ND	0.34	
71-55-6	1,1,1-Trichloroethane	ND	1.4	ND	0.25	
71-43-2	Benzene	ND	1.4	ND	0.43	
56-23-5	Carbon Tetrachloride	ND	1.4	ND	0.22	
78-87-5	1,2-Dichloropropane	ND	1.4	ND	0.30	

 $ND = Compound \ was \ analyzed \ for, \ but \ not \ detected \ above \ the \ \textbf{laboratory reporting limit}.$

COLUMBIA ANALYTICATISTRVICES, INC.	Date:_		
•		_	

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 5A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-005

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00115

Copy of P2202349.xls - Sample (5)

Pi 1 = -1.4 Pf 1 = 3.5

D.F. = 1.37

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.4	ND	0.20	
79-01-6	Trichloroethene	ND	1.4	ND	0.26	
10061-01-5	cis-1,3-Dichloropropene	ND	1.4	ND	0.30	
108-10-1	4-Methyl-2-pentanone	ND	1.4	ND	0.33	
10061-02-6	trans-1,3-Dichloropropene	ND	1.4	ND	0.30	
79-00-5	1,1,2-Trichloroethane	ND	1.4	ND	0.25	
108-88-3	Toluene	4.6	1.4	1.2	0.36	
591-78-6	2-Hexanone	ND	1.4	ND	0.33	
124-48-1	Dibromochloromethane	ND	1.4	ND	0.16	
106-93-4	1,2-Dibromoethane	ND	1.4	ND	0.18	
123-86-4	n-Butyl Acetate	ND	1.4	ND	0.29	
127-18-4	Tetrachloroethene	ND	1.4	ND	0.20	
108-90-7	Chlorobenzene	ND	1.4	ND	0.30	
100-41-4	Ethylbenzene	ND	1.4	ND	0.32	
136777-61-2	<i>m,p</i> -Xylenes	1.6	1.4	0.38	0.32	
75-25-2	Bromoform	ND	1.4	ND	0.13	
100-42-5	Styrene	ND	1.4	ND	0.32	
95-47-6	o-Xylene	ND	1.4	ND	0.32	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.4	ND	0.20	
541-73-1	1,3-Dichlorobenzene	ND	1.4	ND	0.23	
106-46-7	1,4-Dichlorobenzene	ND	1.4	ND	0.23	
95-50-1	1,2-Dichlorobenzene	ND	1.4	ND	0.23	
120-82-1	1,2,4-Trichlorobenzene	ND	1.4	ND	0.18	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:	
		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID:6ACAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P2202349-006

Test Code: EPA TO-15 Date Collected: 11/25/02
Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00025

Pi 1 = -2.6 Pf 1 = 3.5

D.F. = 1.50

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.5	ND	0.73	
75-01-4	Vinyl Chloride	ND	1.5	ND	0.59	
74-83-9	Bromomethane	ND	1.5	ND	0.39	
75-00-3	Chloroethane	ND	1.5	ND	0.57	
67-64-1	Acetone	13	1.5	5.6	0.63	
75-69-4	Trichlorofluoromethane	9.3	1.5	1.7	0.27	
67-63-0	Isopropyl Alcohol	ND	1.5	ND	0.61	
75-35-4	1,1-Dichloroethene	ND	1.5	ND	0.38	
75-09-2	Methylene chloride	ND	1.5	ND	0.43	
76-13-1	Trichlorotrifluoroethane	ND	1.5	ND	0.20	
75-15-0	Carbon Disulfide	ND	1.5	ND	0.48	
156-60-5	trans-1,2-Dichloroethene	ND	1.5	ND	0.38	
75-34-3	1,1-Dichloroethane	ND	1.5	ND	0.37	
1634-04-4	Methyl tert-Butyl Ether	ND	1.5	ND	0.42	
108-05-4	Vinyl Acetate	ND	1.5	ND	0.43	
78-93-3	2-Butanone (MEK)	ND	1.5	ND	0.51	
156-59-2	cis-1,2-Dichloroethene	ND	1.5	ND	0.38	
67-66-3	Chloroform	ND	1.5	ND	0.31	
107-06-2	1,2-Dichloroethane	ND	1.5	ND	0.37	
71-55-6	1,1,1-Trichloroethane	ND	1.5	ND	0.28	
71-43-2	Benzene	ND	1.5	ND	0.47	
56-23-5	Carbon Tetrachloride	ND	1.5	ND	0.24	
78-87-5	1,2-Dichloropropane	ND	1.5	ND	0.32	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTICATISTRY	VICES, INC.	_Date:

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 6A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-006

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00025

Pi 1 = -2.6 Pf 1 = 3.5

D.F. = 1.50

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.5	ND	0.22	
79-01-6	Trichloroethene	ND	1.5	ND	0.28	
10061-01-5	cis-1,3-Dichloropropene	ND	1.5	ND	0.33	
108-10-1	4-Methyl-2-pentanone	ND	1.5	ND	0.37	
10061-02-6	trans-1,3-Dichloropropene	ND	1.5	ND	0.33	
79-00-5	1,1,2-Trichloroethane	ND	1.5	ND	0.28	
108-88-3	Toluene	2.4	1.5	0.64	0.40	
591-78-6	2-Hexanone	ND	1.5	ND	0.37	
124-48-1	Dibromochloromethane	ND	1.5	ND	0.18	
106-93-4	1,2-Dibromoethane	ND	1.5	ND	0.20	
123-86-4	n-Butyl Acetate	ND	1.5	ND	0.32	
127-18-4	Tetrachloroethene	ND	1.5	ND	0.22	
108-90-7	Chlorobenzene	ND	1.5	ND	0.33	
100-41-4	Ethylbenzene	ND	1.5	ND	0.35	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.5	ND	0.35	
75-25-2	Bromoform	ND	1.5	ND	0.15	
100-42-5	Styrene	ND	1.5	ND	0.35	
95-47-6	o-Xylene	ND	1.5	ND	0.35	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.5	ND	0.22	
541-73-1	1,3-Dichlorobenzene	ND	1.5	ND	0.25	
106-46-7	1,4-Dichlorobenzene	ND	1.5	ND	0.25	
95-50-1	1,2-Dichlorobenzene	ND	1.5	ND	0.25	
120-82-1	1,2,4-Trichlorobenzene	ND	1.5	ND	0.20	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Copy of P2202349.xls - Sample (6)

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 7A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-007

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00014

Pi 1 = -2.6 Pf 1 = 3.5

D.F. = 1.50

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.5	ND	0.73	
75-01-4	Vinyl Chloride	ND	1.5	ND	0.59	
74-83-9	Bromomethane	ND	1.5	ND	0.39	
75-00-3	Chloroethane	ND	1.5	ND	0.57	
67-64-1	Acetone	22	1.5	9.3	0.63	
75-69-4	Trichlorofluoromethane	9.9	1.5	1.8	0.27	
67-63-0	Isopropyl Alcohol	6.5	1.5	2.6	0.61	
75-35-4	1,1-Dichloroethene	ND	1.5	ND	0.38	
75-09-2	Methylene chloride	ND	1.5	ND	0.43	
76-13-1	Trichlorotrifluoroethane	ND	1.5	ND	0.20	
75-15-0	Carbon Disulfide	ND	1.5	ND	0.48	
156-60-5	trans-1,2-Dichloroethene	ND	1.5	ND	0.38	
75-34-3	1,1-Dichloroethane	ND	1.5	ND	0.37	
1634-04-4	Methyl tert-Butyl Ether	ND	1.5	ND	0.42	
108-05-4	Vinyl Acetate	ND	1.5	ND	0.43	
78-93-3	2-Butanone (MEK)	3.9	1.5	1.3	0.51	
156-59-2	cis-1,2-Dichloroethene	ND	1.5	ND	0.38	
67-66-3	Chloroform	ND	1.5	ND	0.31	
107-06-2	1,2-Dichloroethane	ND	1.5	ND	0.37	
71-55-6	1,1,1-Trichloroethane	ND	1.5	ND	0.28	
71-43-2	Benzene	ND	1.5	ND	0.47	
56-23-5	Carbon Tetrachloride	ND	1.5	ND	0.24	
78-87-5	1,2-Dichloropropane	ND	1.5	ND	0.32	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTICATISTRVICES, INC.	Date:
	T. 17

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 7A CAS Project ID: P2202349
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202349-007

Test Code: EPA TO-15 Date Collected: 11/25/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/26/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00014

Pi 1 = -2.6 Pf 1 = 3.5

D.F. = 1.50

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.5	ND	0.22	
79-01-6	Trichloroethene	ND	1.5	ND	0.28	
10061-01-5	cis-1,3-Dichloropropene	ND	1.5	ND	0.33	
108-10-1	4-Methyl-2-pentanone	ND	1.5	ND	0.37	
10061-02-6	trans-1,3-Dichloropropene	ND	1.5	ND	0.33	
79-00-5	1,1,2-Trichloroethane	ND	1.5	ND	0.28	
108-88-3	Toluene	5.5	1.5	1.5	0.40	
591-78-6	2-Hexanone	ND	1.5	ND	0.37	
124-48-1	Dibromochloromethane	ND	1.5	ND	0.18	
106-93-4	1,2-Dibromoethane	ND	1.5	ND	0.20	
123-86-4	n-Butyl Acetate	ND	1.5	ND	0.32	
127-18-4	Tetrachloroethene	ND	1.5	ND	0.22	
108-90-7	Chlorobenzene	ND	1.5	ND	0.33	
100-41-4	Ethylbenzene	ND	1.5	ND	0.35	
136777-61-2	<i>m,p</i> -Xylenes	1.5	1.5	0.35	0.35	
75-25-2	Bromoform	ND	1.5	ND	0.15	
100-42-5	Styrene	ND	1.5	ND	0.35	
95-47-6	o-Xylene	ND	1.5	ND	0.35	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.5	ND	0.22	
541-73-1	1,3-Dichlorobenzene	ND	1.5	ND	0.25	
106-46-7	1,4-Dichlorobenzene	ND	1.5	ND	0.25	
95-50-1	1,2-Dichlorobenzene	ND	1.5	ND	0.25	
120-82-1	1,2,4-Trichlorobenzene	ND	1.5	ND	0.20	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:	
		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P021205-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.0	ND	0.48	
75-01-4	Vinyl Chloride	ND	1.0	ND	0.39	
74-83-9	Bromomethane	ND	1.0	ND	0.26	
75-00-3	Chloroethane	ND	1.0	ND	0.38	
67-64-1	Acetone	ND	1.0	ND	0.42	
75-69-4	Trichlorofluoromethane	ND	1.0	ND	0.18	
67-63-0	Isopropyl Alcohol	ND	1.0	ND	0.41	
75-35-4	1,1-Dichloroethene	ND	1.0	ND	0.25	
75-09-2	Methylene chloride	ND	1.0	ND	0.29	
76-13-1	Trichlorotrifluoroethane	ND	1.0	ND	0.13	
75-15-0	Carbon Disulfide	ND	1.0	ND	0.32	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ND	0.25	
75-34-3	1,1-Dichloroethane	ND	1.0	ND	0.25	
1634-04-4	Methyl tert-Butyl Ether	ND	1.0	ND	0.28	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	1.0	ND	0.34	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ND	0.25	
67-66-3	Chloroform	ND	1.0	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	1.0	ND	0.25	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ND	0.18	
71-43-2	Benzene	ND	1.0	ND	0.31	
56-23-5	Carbon Tetrachloride	ND	1.0	ND	0.16	
78-87-5	1,2-Dichloropropane	ND	1.0	ND	0.22	

 $ND = Compound \ was \ analyzed \ for, \ but \ not \ detected \ above \ the \ \textbf{laboratory reporting limit}.$

COLUMBIA ANALYTICATISTRVICES, INC.	Date:
	T. 17

Page 2 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P021205-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

-	-	-1		1		
CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.0	ND	0.15	
79-01-6	Trichloroethene	ND	1.0	ND	0.19	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ND	0.22	
108-10-1	4-Methyl-2-pentanone	ND	1.0	ND	0.24	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ND	0.22	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ND	0.18	
108-88-3	Toluene	ND	1.0	ND	0.27	
591-78-6	2-Hexanone	ND	1.0	ND	0.24	
124-48-1	Dibromochloromethane	ND	1.0	ND	0.12	
106-93-4	1,2-Dibromoethane	ND	1.0	ND	0.13	
123-86-4	n -Butyl Acetate	ND	1.0	ND	0.21	
127-18-4	Tetrachloroethene	ND	1.0	ND	0.15	
108-90-7	Chlorobenzene	ND	1.0	ND	0.22	
100-41-4	Ethylbenzene	ND	1.0	ND	0.23	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	1.0	ND	0.097	
100-42-5	Styrene	ND	1.0	ND	0.23	
95-47-6	o-Xylene	ND	1.0	ND	0.23	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ND	0.17	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ND	0.17	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	ND	0.13	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Copy of P2202349.xls - MBlank

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P021205-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	1.0	ND	0.48	
75-01-4	Vinyl Chloride	ND	1.0	ND	0.39	
74-83-9	Bromomethane	ND	1.0	ND	0.26	
75-00-3	Chloroethane	ND	1.0	ND	0.38	
67-64-1	Acetone	ND	1.0	ND	0.42	
75-69-4	Trichlorofluoromethane	ND	1.0	ND	0.18	
67-63-0	Isopropyl Alcohol	ND	1.0	ND	0.41	
75-35-4	1,1-Dichloroethene	ND	1.0	ND	0.25	
75-09-2	Methylene chloride	ND	1.0	ND	0.29	
76-13-1	Trichlorotrifluoroethane	ND	1.0	ND	0.13	
75-15-0	Carbon Disulfide	ND	1.0	ND	0.32	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ND	0.25	
75-34-3	1,1-Dichloroethane	ND	1.0	ND	0.25	
1634-04-4	Methyl tert-Butyl Ether	ND	1.0	ND	0.28	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	1.0	ND	0.34	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ND	0.25	
67-66-3	Chloroform	ND	1.0	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	1.0	ND	0.25	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ND	0.18	
71-43-2	Benzene	ND	1.0	ND	0.31	
56-23-5	Carbon Tetrachloride	ND	1.0	ND	0.16	
78-87-5	1,2-Dichloropropane	ND	1.0	ND	0.22	

 $ND = Compound \ was \ analyzed \ for, \ but \ not \ detected \ above \ the \ \textbf{laboratory reporting limit}.$

COLUMBIA ANALYTICATISHRVICES	LINC.	Date:
COLUMN THE THE POLICY FIELD	,	2 4.00

Page 2 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202349Client Project ID:Kaiser/06-11057BCAS Sample ID: P021205-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5972/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/5/02

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.0	ND	0.15	
79-01-6	Trichloroethene	ND	1.0	ND	0.19	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ND	0.22	
108-10-1	4-Methyl-2-pentanone	ND	1.0	ND	0.24	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ND	0.22	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ND	0.18	
108-88-3	Toluene	ND	1.0	ND	0.27	
591-78-6	2-Hexanone	ND	1.0	ND	0.24	
124-48-1	Dibromochloromethane	ND	1.0	ND	0.12	
106-93-4	1,2-Dibromoethane	ND	1.0	ND	0.13	
123-86-4	n-Butyl Acetate	ND	1.0	ND	0.21	
127-18-4	Tetrachloroethene	ND	1.0	ND	0.15	
108-90-7	Chlorobenzene	ND	1.0	ND	0.22	
100-41-4	Ethylbenzene	ND	1.0	ND	0.23	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	1.0	ND	0.097	
100-42-5	Styrene	ND	1.0	ND	0.23	
95-47-6	o-Xylene	ND	1.0	ND	0.23	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ND	0.17	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ND	0.17	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	ND	0.13	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Copy of P2202349.xls - MBlank (2)

Verified By:	Date:	
•		Page No.:

RESULTS OF ANALYSIS

Page 1 of 1

Environ International Corporation Client:

CAS Project ID: P2202366 **Client Sample ID:** Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202366-001

Test Code: EPA TO-15 Date Collected: 11/26/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/27/02

Analyst: Svetlana Walsh Date(s) Analyzed: 12/2/02

Sampling Media: Summa Canister Volume(s) Analyzed: 0.0050 Liter(s) Test Notes:

0.0010 Liter(s)

Container ID: AC00371

> Pi 1 = 0.3 Pf 1 = 3.5

> > D.F. = 1.21

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	240	ND	120	
75-01-4	Vinyl Chloride	ND	240	ND	95	
74-83-9	Bromomethane	ND	240	ND	62	
75-00-3	Chloroethane	ND	240	ND	92	
67-64-1	Acetone	ND	240	ND	100	
75-69-4	Trichlorofluoromethane	ND	240	ND	43	
67-63-0	Isopropyl Alcohol	ND	240	ND	98	
75-35-4	1,1-Dichloroethene	350	240	88	61	
75-09-2	Methylene chloride	ND	240	ND	70	
76-13-1	Trichlorotrifluoroethane	810	240	110	32	
75-15-0	Carbon Disulfide	ND	240	ND	78	
156-60-5	trans-1,2-Dichloroethene	ND	240	ND	61	
75-34-3	1,1-Dichloroethane	ND	240	ND	60	
1634-04-4	Methyl tert-Butyl Ether	ND	240	ND	67	
108-05-4	Vinyl Acetate	ND	240	ND	69	
78-93-3	2-Butanone (MEK)	ND	240	ND	82	
156-59-2	cis-1,2-Dichloroethene	4,000	240	1,000	61	
67-66-3	Chloroform	ND	240	ND	50	
107-06-2	1,2-Dichloroethane	ND	240	ND	60	
71-55-6	1,1,1-Trichloroethane	1,700	240	310	44	
71-43-2	Benzene	ND	240	ND	76	
56-23-5	Carbon Tetrachloride	ND	240	ND	38	
78-87-5	1,2-Dichloropropane	ND	240	ND	52	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

COLUMBIA ANALYTICALISERVICES, INC.	Date:
------------------------------------	-------

Page 1 of 1

Client: Environ International Corporation

Client Sample ID: 8A CAS Project ID: P2202366
Client Project ID: Kaiser/06-11057B CAS Sample ID: P2202366-001

Test Code: EPA TO-15 Date Collected: 11/26/02 Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: 11/27/02 Analyst: Svetlana Walsh Date(s) Analyzed: 12/2/02

Sampling Media: Summa Canister Volume(s) Analyzed: 0.0050 Liter(s)
Test Notes: 0.0010 Liter(s)

Container ID: AC00371

Pi 1 = 0.3 Pf 1 = 3.5

D.F. = 1.21

	<u> </u>	-ir		<u> </u>	D.F. =	1
CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
75-27-4	Bromodichloromethane	ND	240	ND	36	
79-01-6	Trichloroethene	47,000	240	8,700	45	
10061-01-5	cis-1,3-Dichloropropene	ND	240	ND	53	
108-10-1	4-Methyl-2-pentanone	ND	240	ND	59	
10061-02-6	trans-1,3-Dichloropropene	ND	240	ND	53	
79-00-5	1,1,2-Trichloroethane	ND	240	ND	44	
108-88-3	Toluene	ND	240	ND	64	
591-78-6	2-Hexanone	ND	240	ND	59	
124-48-1	Dibromochloromethane	ND	240	ND	28	
106-93-4	1,2-Dibromoethane	ND	240	ND	32	
123-86-4	n -Butyl Acetate	ND	240	ND	51	
127-18-4	Tetrachloroethene	ND	240	ND	36	
108-90-7	Chlorobenzene	ND	240	ND	53	
100-41-4	Ethylbenzene	ND	240	ND	56	
136777-61-2	m,p -Xylenes	ND	240	ND	56	
75-25-2	Bromoform	ND	240	ND	23	
100-42-5	Styrene	ND	240	ND	57	
95-47-6	o-Xylene	ND	240	ND	56	
79-34-5	1,1,2,2-Tetrachloroethane	ND	240	ND	35	
541-73-1	1,3-Dichlorobenzene	ND	240	ND	40	
106-46-7	1,4-Dichlorobenzene	ND	240	ND	40	
95-50-1	1,2-Dichlorobenzene	ND	240	ND	40	
120-82-1	1,2,4-Trichlorobenzene	ND	240	ND	33	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

P2202366 - Rev..xls - Sample

RESULTS OF ANALYSIS Page 1 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202366Client Project ID:Kaiser/06-11057BCAS Sample ID: P021202-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/2/02
Sampling Media: Summa Canister Volume(s) Analyzed: 1 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	μg/m³ 1.0	ND	0.48	Quantitei
75-01-4	Vinyl Chloride	ND	1.0	ND	0.39	
74-83-9	Bromomethane	ND	1.0	ND	0.26	
75-00-3	Chloroethane	ND ND	1.0	ND	0.20	
67-64-1	Acetone	ND	1.0	ND	0.38	
75-69-4	Trichlorofluoromethane	ND	1.0	ND	0.42	
67-63-0	Isopropyl Alcohol	ND ND	1.0	ND ND	0.18	
75-35-4	1,1-Dichloroethene	ND ND	1.0	ND ND	0.41	
75-09-2		1	1.0			
	Methylene chloride	ND		ND	0.29	
76-13-1	Trichlorotrifluoroethane	ND	1.0	ND	0.13	
75-15-0	Carbon Disulfide	ND	1.0	ND	0.32	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ND	0.25	
75-34-3	1,1-Dichloroethane	ND	1.0	ND	0.25	
1634-04-4	Methyl tert-Butyl Ether	ND	1.0	ND	0.28	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	1.0	ND	0.34	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ND	0.25	
67-66-3	Chloroform	ND	1.0	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	1.0	ND	0.25	
71-55-6	1,1,1-Trichloroethane	ND	1.0	ND	0.18	
71-43-2	Benzene	ND	1.0	ND	0.31	
56-23-5	Carbon Tetrachloride	ND	1.0	ND	0.16	
78-87-5	1,2-Dichloropropane	ND	1.0	ND	0.22	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined bu the referenced method.

Verified By:	Date:	
•		Page No.:

P2202366 - Rev..xls - MBlank

RESULTS OF ANALYSIS Page 2 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2202366Client Project ID:Kaiser/06-11057BCAS Sample ID: P021202-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: HP5973/Tekmar AUTOCan Elite Date Received: NA
Analyst: Svetlana Walsh Date(s) Analyzed: 12/2/02
Sampling Media: Summa Canister Volume(s) Analyzed: 1 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	1.0	ND	0.15	
79-01-6	Trichloroethene	ND	1.0	ND	0.19	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ND	0.22	
108-10-1	4-Methyl-2-pentanone	ND	1.0	ND	0.24	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ND	0.22	
79-00-5	1,1,2-Trichloroethane	ND	1.0	ND	0.18	
108-88-3	Toluene	ND	1.0	ND	0.27	
591-78-6	2-Hexanone	ND	1.0	ND	0.24	
124-48-1	Dibromochloromethane	ND	1.0	ND	0.12	
106-93-4	1,2-Dibromoethane	ND	1.0	ND	0.13	
123-86-4	n -Butyl Acetate	ND	1.0	ND	0.21	
127-18-4	Tetrachloroethene	ND	1.0	ND	0.15	
108-90-7	Chlorobenzene	ND	1.0	ND	0.22	
100-41-4	Ethylbenzene	ND	1.0	ND	0.23	
136777-61-2	<i>m,p</i> -Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	1.0	ND	0.097	
100-42-5	Styrene	ND	1.0	ND	0.23	
95-47-6	o-Xylene	ND	1.0	ND	0.23	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ND	0.15	
541-73-1	1,3-Dichlorobenzene	ND	1.0	ND	0.17	
106-46-7	1,4-Dichlorobenzene	ND	1.0	ND	0.17	
95-50-1	1,2-Dichlorobenzene	ND	1.0	ND	0.17	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	ND	0.13	

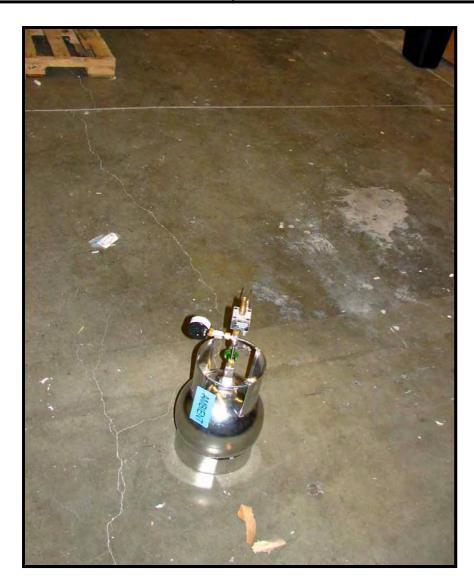
ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

P2202366 - Rev..xls - MBlank

Facility:	Kaiser Permanente	Caption:	Sample 1A	
Date:	03/14/2007		ling 19000, Electrical Room (PG&E	
Photo No.	1	Equipment Room)		

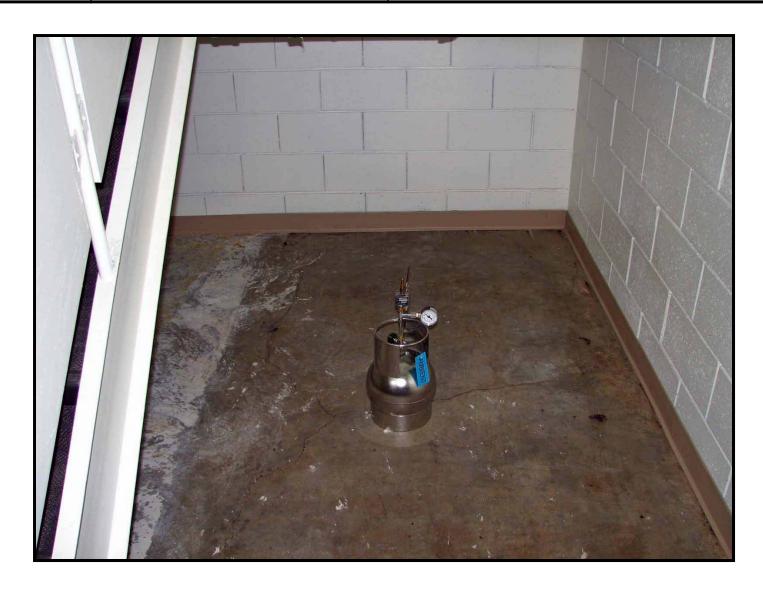

Facility:	Kaiser Permanente	Caption:	Sample 1A (Different View)
Date:	03/14/2007		ling 19000, Electrical Room (PG&E
Photo No.	2	Equipment Room)	

Facility:	Kaiser Permanente	Caption:	Sample 2A
Date:	03/14/2007	Notes: Building 19000, Shipping and Receiving	
Photo No.	3	Area	

Facility:	Kaiser Permanente	Caption: Sample 2A (Different View)	
Date:	03/14/2007	Notes: Building 19000, Shipping and Receiving	
Photo No.	4	Area	

Facility:	Kaiser Permanente	Caption:	Sample 3A	
Date:	03/14/2007	Notes: Building 19000, Security Room (Sprinkle		
Photo No.	5	Riser location)		

Facility:	Kaiser Permanente	Caption:	Sample 3A (Closer View)	
Date:	03/14/2007	Notes: Building 19000, Security Room (Sprinkle		
Photo No.	6	Riser location)		


Facility:	Kaiser Permanente	Caption: Sample 4A	
Date:	03/14/2007	Notes: Building 10950, Electrical Room	
Photo No.	7		

Facility:	Kaiser Permanente	Caption: Sample 4A (Closer View)	
Date:	03/14/2007	Notes: Building 10950, Electrical Room	
Photo No.	8		

Facility:	Kaiser Permanente	Caption: Sample 5A		
Date:	03/14/2007	Notes: Building 10950, Stairs Entrance		
Photo No.	9			

Facility:	Kaiser Permanente	Caption:	Sample 6A	
Date:	03/14/2007	Notes: Building 10950, Elevator Equipment Roo		
Photo No.	10			

Facility:	Kaiser Permanente	Caption: Sample 7A – Background	
Date:	03/14/2007	Notes: Building 10950 Rooftop (HVAC Systems)	
Photo No.	11		

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 1A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-001

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00522

Pi 1 = -0.7 Pf 1 = 3.5

Can D.F. = 1.30

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	0.54	0.13	0.26	0.063	
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
74-83-9	Bromomethane	ND	0.13	ND	0.033	
75-00-3	Chloroethane	ND	0.13	ND	0.049	
67-64-1	Acetone	11	6.5	4.5	2.7	M
75-69-4	Trichlorofluoromethane	1.1	0.13	0.19	0.023	
67-63-0	2-Propanol (Isopropyl Alcohol)	1.6	0.13	0.63	0.053	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.033	
75-09-2	Methylene chloride	0.34	0.13	0.097	0.037	
76-13-1	Trichlorotrifluoroethane	0.55	0.13	0.072	0.017	
75-15-0	Carbon Disulfide	ND	0.65	ND	0.21	
156-60-5	trans-1,2-Dichloroethene	ND	0.13	ND	0.033	
75-34-3	1,1-Dichloroethane	ND	0.13	ND	0.032	
1634-04-4	Methyl tert-Butyl Ether	ND	0.13	ND	0.036	
108-05-4	Vinyl Acetate	2.9	1.3	0.83	0.37	M
78-93-3	2-Butanone (MEK)	1.5	0.13	0.52	0.044	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.033	
67-66-3	Chloroform	0.17	0.13	0.034	0.027	
107-06-2	1,2-Dichloroethane	ND	0.13	ND	0.032	
71-55-6	1,1,1-Trichloroethane	ND	0.13	ND	0.024	
71-43-2	Benzene	0.66	0.13	0.21	0.041	
56-23-5	Carbon Tetrachloride	0.37	0.13	0.060	0.021	
78-87-5	1,2-Dichloropropane	ND	0.13	ND	0.028	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. <math>M = Matrix interference; results may be biased high.

Verified By:	Date:
--------------	-------

Siemens - Indoor Air Splg Analytical (2007).xls - Sample

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 1A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-001

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00522

Pi 1 = -0.7 Pf 1 = 3.5

Can D.F. = 1.30

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.13	ND	0.019	
79-01-6	Trichloroethene	0.16	0.13	0.030	0.024	
10061-01-5	cis-1,3-Dichloropropene	ND	0.13	ND	0.029	
108-10-1	4-Methyl-2-pentanone	ND	0.65	ND	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.65	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.13	ND	0.024	
108-88-3	Toluene	2.0	0.13	0.52	0.035	
591-78-6	2-Hexanone	0.23	0.13	0.056	0.032	
124-48-1	Dibromochloromethane	ND	0.13	ND	0.015	
106-93-4	1,2-Dibromoethane	ND	0.13	ND	0.017	
123-86-4	n-Butyl Acetate	0.21	0.13	0.045	0.027	
127-18-4	Tetrachloroethene	0.76	0.13	0.11	0.019	
108-90-7	Chlorobenzene	ND	0.13	ND	0.028	
100-41-4	Ethylbenzene	0.33	0.13	0.077	0.030	
179601-23-1	<i>m,p</i> -Xylenes	1.5	0.26	0.36	0.060	
75-25-2	Bromoform	ND	0.13	ND	0.013	
100-42-5	Styrene	ND	0.13	ND	0.031	
95-47-6	o-Xylene	0.50	0.13	0.12	0.030	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.13	ND	0.019	
541-73-1	1,3-Dichlorobenzene	ND	0.13	ND	0.022	
106-46-7	1,4-Dichlorobenzene	ND	0.13	ND	0.022	
95-50-1	1,2-Dichlorobenzene	ND	0.13	ND	0.022	
120-82-1	1,2,4-Trichlorobenzene	ND	0.13	ND	0.018	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

M = Matrix interference; results may be biased high.

Verified By:	Date:	
	_	

Siemens - Indoor Air Splg Analytical (2007).xls - Sample

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 2A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-002

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00969

Pi 1 = -1.6 Pf 1 = 3.5

Can D.F. = 1.39

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.55	0.14	0.26	0.067	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
74-83-9	Bromomethane	ND	0.14	ND	0.036	
75-00-3	Chloroethane	ND	0.14	ND	0.053	
67-64-1	Acetone	12	7.0	5.2	2.9	
75-69-4	Trichlorofluoromethane	1.1	0.14	0.19	0.025	
67-63-0	2-Propanol (Isopropyl Alcohol)	2.6	0.14	1.1	0.057	
75-35-4	1,1-Dichloroethene	ND	0.14	ND	0.035	
75-09-2	Methylene chloride	0.38	0.14	0.11	0.040	
76-13-1	Trichlorotrifluoroethane	0.56	0.14	0.073	0.018	
75-15-0	Carbon Disulfide	ND	0.70	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.14	ND	0.035	
75-34-3	1,1-Dichloroethane	ND	0.14	ND	0.034	
1634-04-4	Methyl tert-Butyl Ether	ND	0.14	ND	0.039	
108-05-4	Vinyl Acetate	ND	1.4	ND	0.39	
78-93-3	2-Butanone (MEK)	1.4	0.14	0.49	0.047	
156-59-2	cis-1,2-Dichloroethene	ND	0.14	ND	0.035	
67-66-3	Chloroform	0.20	0.14	0.040	0.028	
107-06-2	1,2-Dichloroethane	ND	0.14	ND	0.034	
71-55-6	1,1,1-Trichloroethane	ND	0.14	ND	0.025	
71-43-2	Benzene	0.71	0.14	0.22	0.044	
56-23-5	Carbon Tetrachloride	0.38	0.14	0.061	0.022	
78-87-5	1,2-Dichloropropane	ND	0.14	ND	0.030	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:
--------------	-------

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 2A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-002

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00969

Pi 1 = -1.6 Pf 1 = 3.5

Can D.F. = 1.39

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.14	ND	0.021	
79-01-6	Trichloroethene	0.14	0.14	0.026	0.026	
10061-01-5	cis-1,3-Dichloropropene	ND	0.14	ND	0.031	
108-10-1	4-Methyl-2-pentanone	ND	0.70	ND	0.17	
10061-02-6	trans-1,3-Dichloropropene	ND	0.70	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.14	ND	0.025	
108-88-3	Toluene	2.7	0.14	0.71	0.037	
591-78-6	2-Hexanone	0.19	0.14	0.047	0.034	
124-48-1	Dibromochloromethane	ND	0.14	ND	0.016	
106-93-4	1,2-Dibromoethane	ND	0.14	ND	0.018	
123-86-4	n-Butyl Acetate	0.24	0.14	0.051	0.029	
127-18-4	Tetrachloroethene	0.61	0.14	0.090	0.021	
108-90-7	Chlorobenzene	ND	0.14	ND	0.030	
100-41-4	Ethylbenzene	0.52	0.14	0.12	0.032	
179601-23-1	m,p -Xylenes	2.6	0.28	0.61	0.064	
75-25-2	Bromoform	ND	0.14	ND	0.013	
100-42-5	Styrene	0.19	0.14	0.044	0.033	
95-47-6	o-Xylene	1.1	0.14	0.25	0.032	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.14	ND	0.020	
541-73-1	1,3-Dichlorobenzene	ND	0.14	ND	0.023	
106-46-7	1,4-Dichlorobenzene	0.39	0.14	0.065	0.023	
95-50-1	1,2-Dichlorobenzene	ND	0.14	ND	0.023	
120-82-1	1,2,4-Trichlorobenzene	ND	0.14	ND	0.019	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (2)

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 3A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-003

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00606

Pi 1 = -3.2 Pf 1 = 3.6

Can D.F. = 1.59

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	0.58	0.16	0.28	0.077	
75-01-4	Vinyl Chloride	ND	0.16	ND	0.062	
74-83-9	Bromomethane	ND	0.16	ND	0.041	
75-00-3	Chloroethane	ND	0.16	ND	0.060	
67-64-1	Acetone	14	8.0	5.9	3.3	
75-69-4	Trichlorofluoromethane	1.2	0.16	0.21	0.028	
67-63-0	2-Propanol (Isopropyl Alcohol)	4.6	0.16	1.9	0.065	
75-35-4	1,1-Dichloroethene	ND	0.16	ND	0.040	
75-09-2	Methylene chloride	0.39	0.16	0.11	0.046	
76-13-1	Trichlorotrifluoroethane	0.63	0.16	0.082	0.021	
75-15-0	Carbon Disulfide	ND	0.80	ND	0.26	
156-60-5	trans-1,2-Dichloroethene	ND	0.16	ND	0.040	
75-34-3	1,1-Dichloroethane	ND	0.16	ND	0.039	
1634-04-4	Methyl tert-Butyl Ether	ND	0.16	ND	0.044	
108-05-4	Vinyl Acetate	ND	1.6	ND	0.45	
78-93-3	2-Butanone (MEK)	1.0	0.16	0.35	0.054	
156-59-2	cis-1,2-Dichloroethene	ND	0.16	ND	0.040	
67-66-3	Chloroform	0.34	0.16	0.069	0.033	
107-06-2	1,2-Dichloroethane	ND	0.16	ND	0.039	
71-55-6	1,1,1-Trichloroethane	0.38	0.16	0.069	0.029	
71-43-2	Benzene	0.77	0.16	0.24	0.050	
56-23-5	Carbon Tetrachloride	0.38	0.16	0.060	0.025	
78-87-5	1,2-Dichloropropane	ND	0.16	ND	0.034	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (3)

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 3A CAS Project ID: P2700736B Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-003

Test Code: EPA TO-15 Date Collected: 3/14/07 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07 Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00606

Pi 1 = -3.2 Pf 1 = 3.6

Can D.F. = 1.59

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.16	ND	0.024	
79-01-6	Trichloroethene	0.56	0.16	0.10	0.030	
10061-01-5	cis-1,3-Dichloropropene	ND	0.16	ND	0.035	
108-10-1	4-Methyl-2-pentanone	0.93	0.80	0.23	0.19	
10061-02-6	trans-1,3-Dichloropropene	ND	0.80	ND	0.18	
79-00-5	1,1,2-Trichloroethane	ND	0.16	ND	0.029	
108-88-3	Toluene	2.2	0.16	0.59	0.042	
591-78-6	2-Hexanone	0.22	0.16	0.053	0.039	
124-48-1	Dibromochloromethane	ND	0.16	ND	0.019	
106-93-4	1,2-Dibromoethane	ND	0.16	ND	0.021	
123-86-4	n-Butyl Acetate	0.69	0.16	0.15	0.033	
127-18-4	Tetrachloroethene	0.80	0.16	0.12	0.023	
108-90-7	Chlorobenzene	ND	0.16	ND	0.035	
100-41-4	Ethylbenzene	0.45	0.16	0.10	0.037	
179601-23-1	<i>m,p</i> -Xylenes	2.0	0.32	0.46	0.073	
75-25-2	Bromoform	ND	0.16	ND	0.015	
100-42-5	Styrene	0.25	0.16	0.060	0.037	
95-47-6	o-Xylene	0.74	0.16	0.17	0.037	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.16	ND	0.023	
541-73-1	1,3-Dichlorobenzene	ND	0.16	ND	0.026	
106-46-7	1,4-Dichlorobenzene	ND	0.16	ND	0.026	
95-50-1	1,2-Dichlorobenzene	ND	0.16	ND	0.026	
120-82-1	1,2,4-Trichlorobenzene	0.19	0.16	0.026	0.021	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (3)

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 4A CAS Project ID: P2700736B Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-004

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01338

Pi 1 = -0.3 Pf 1 = 3.6

Can D.F. = 1.27

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	0.56	0.13	0.27	0.062	Comment
75-01-4	Vinyl Chloride	ND	0.13	ND	0.050	
74-83-9	Bromomethane	ND	0.13	ND	0.033	
75-00-3	Chloroethane	ND	0.13	ND	0.048	
67-64-1	Acetone	34	6.4	14	2.7	
75-69-4	Trichlorofluoromethane	1.2	0.13	0.21	0.023	
67-63-0	2-Propanol (Isopropyl Alcohol)	38	0.13	15	0.052	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.032	
75-09-2	Methylene chloride	0.33	0.13	0.094	0.037	
76-13-1	Trichlorotrifluoroethane	0.69	0.13	0.090	0.017	
75-15-0	Carbon Disulfide	ND	0.64	ND	0.20	
156-60-5	trans-1,2-Dichloroethene	ND	0.13	ND	0.032	
75-34-3	1,1-Dichloroethane	ND	0.13	ND	0.031	
1634-04-4	Methyl tert-Butyl Ether	ND	0.13	ND	0.035	
108-05-4	Vinyl Acetate	8.5	1.3	2.4	0.36	M
78-93-3	2-Butanone (MEK)	2.9	0.13	0.98	0.043	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.032	
67-66-3	Chloroform	0.22	0.13	0.044	0.026	
107-06-2	1,2-Dichloroethane	ND	0.13	ND	0.031	
71-55-6	1,1,1-Trichloroethane	0.65	0.13	0.12	0.023	
71-43-2	Benzene	0.73	0.13	0.23	0.040	
56-23-5	Carbon Tetrachloride	0.41	0.13	0.064	0.020	
78-87-5	1,2-Dichloropropane	ND	0.13	ND	0.027	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. <math>M = Matrix interference; results may be biased high.

Verified By:	Date:
--------------	-------

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 4A CAS Project ID: P2700736B Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-004

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01338

Pi 1 = -0.3 Pf 1 = 3.6

Can D.F. = 1.27

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.13	ND	0.019	
79-01-6	Trichloroethene	0.33	0.13	0.062	0.024	
10061-01-5	cis-1,3-Dichloropropene	ND	0.13	ND	0.028	
108-10-1	4-Methyl-2-pentanone	1.0	0.64	0.25	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.64	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.13	ND	0.023	
108-88-3	Toluene	2.4	0.13	0.63	0.034	
591-78-6	2-Hexanone	0.46	0.13	0.11	0.031	
124-48-1	Dibromochloromethane	ND	0.13	ND	0.015	
106-93-4	1,2-Dibromoethane	ND	0.13	ND	0.017	
123-86-4	n-Butyl Acetate	0.76	0.13	0.16	0.027	
127-18-4	Tetrachloroethene	1.1	0.13	0.17	0.019	
108-90-7	Chlorobenzene	ND	0.13	ND	0.028	
100-41-4	Ethylbenzene	0.43	0.13	0.099	0.029	
179601-23-1	<i>m,p</i> -Xylenes	1.8	0.25	0.42	0.059	
75-25-2	Bromoform	ND	0.13	ND	0.012	
100-42-5	Styrene	0.20	0.13	0.047	0.030	
95-47-6	o-Xylene	0.62	0.13	0.14	0.029	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.13	ND	0.019	
541-73-1	1,3-Dichlorobenzene	ND	0.13	ND	0.021	
106-46-7	1,4-Dichlorobenzene	ND	0.13	ND	0.021	
95-50-1	1,2-Dichlorobenzene	ND	0.13	ND	0.021	
120-82-1	1,2,4-Trichlorobenzene	ND	0.13	ND	0.017	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (4)

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 5A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-005

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00718

Pi 1 = -0.5 Pf 1 = 3.7

Can D.F. = 1.30

CAS#	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
74-87-3	Chloromethane	0.58	0.13	0.28	0.063	
75-01-4	Vinyl Chloride	ND	0.13	ND	0.051	
74-83-9	Bromomethane	ND	0.13	ND	0.033	
75-00-3	Chloroethane	ND	0.13	ND	0.049	
67-64-1	Acetone	14	6.5	5.9	2.7	
75-69-4	Trichlorofluoromethane	1.1	0.13	0.20	0.023	
67-63-0	2-Propanol (Isopropyl Alcohol)	14	0.13	5.7	0.053	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.033	
75-09-2	Methylene chloride	0.35	0.13	0.10	0.037	
76-13-1	Trichlorotrifluoroethane	0.59	0.13	0.076	0.017	
75-15-0	Carbon Disulfide	ND	0.65	ND	0.21	
156-60-5	trans-1,2-Dichloroethene	ND	0.13	ND	0.033	
75-34-3	1,1-Dichloroethane	ND	0.13	ND	0.032	
1634-04-4	Methyl tert-Butyl Ether	ND	0.13	ND	0.036	
108-05-4	Vinyl Acetate	1.6	1.3	0.47	0.37	
78-93-3	2-Butanone (MEK)	1.8	0.13	0.61	0.044	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.033	
67-66-3	Chloroform	0.28	0.13	0.057	0.027	
107-06-2	1,2-Dichloroethane	ND	0.13	ND	0.032	
71-55-6	1,1,1-Trichloroethane	ND	0.13	ND	0.024	
71-43-2	Benzene	0.69	0.13	0.22	0.041	
56-23-5	Carbon Tetrachloride	0.41	0.13	0.065	0.021	
78-87-5	1,2-Dichloropropane	ND	0.13	ND	0.028	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (5)

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 5A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-005

Test Code: EPA TO-15 Date Collected: 3/14/07 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07 Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC00718

Pi 1 = -0.5 Pf 1 = 3.7

Can D.F. = 1.30

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.13	ND	0.019	
79-01-6	Trichloroethene	0.16	0.13	0.030	0.024	
10061-01-5	cis-1,3-Dichloropropene	ND	0.13	ND	0.029	
108-10-1	4-Methyl-2-pentanone	ND	0.65	ND	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.65	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.13	ND	0.024	
108-88-3	Toluene	2.2	0.13	0.59	0.035	
591-78-6	2-Hexanone	0.33	0.13	0.080	0.032	
124-48-1	Dibromochloromethane	ND	0.13	ND	0.015	
106-93-4	1,2-Dibromoethane	ND	0.13	ND	0.017	
123-86-4	n-Butyl Acetate	0.39	0.13	0.081	0.027	
127-18-4	Tetrachloroethene	0.26	0.13	0.038	0.019	
108-90-7	Chlorobenzene	ND	0.13	ND	0.028	
100-41-4	Ethylbenzene	0.38	0.13	0.087	0.030	
179601-23-1	<i>m,p</i> -Xylenes	2.0	0.26	0.45	0.060	
75-25-2	Bromoform	ND	0.13	ND	0.013	
100-42-5	Styrene	0.20	0.13	0.048	0.031	
95-47-6	o-Xylene	0.77	0.13	0.18	0.030	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.13	ND	0.019	
541-73-1	1,3-Dichlorobenzene	ND	0.13	ND	0.022	
106-46-7	1,4-Dichlorobenzene	0.14	0.13	0.024	0.022	
95-50-1	1,2-Dichlorobenzene	ND	0.13	ND	0.022	
120-82-1	1,2,4-Trichlorobenzene	ND	0.13	ND	0.018	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (5)

Verified By:	Date:	
•		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 6A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-006

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: ACC0831

Pi 1 = -1.1 Pf 1 = 3.5

Can D.F. = 1.34

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	0.56	0.13	0.27	0.065	
75-01-4	Vinyl Chloride	ND	0.13	ND	0.052	
74-83-9	Bromomethane	ND	0.13	ND	0.035	
75-00-3	Chloroethane	ND	0.13	ND	0.051	
67-64-1	Acetone	18	6.7	7.8	2.8	
75-69-4	Trichlorofluoromethane	1.3	0.13	0.23	0.024	
67-63-0	2-Propanol (Isopropyl Alcohol)	12	0.13	5.0	0.055	
75-35-4	1,1-Dichloroethene	ND	0.13	ND	0.034	
75-09-2	Methylene chloride	0.36	0.13	0.10	0.039	
76-13-1	Trichlorotrifluoroethane	1.3	0.13	0.17	0.017	
75-15-0	Carbon Disulfide	ND	0.67	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.13	ND	0.034	
75-34-3	1,1-Dichloroethane	ND	0.13	ND	0.033	
1634-04-4	Methyl tert-Butyl Ether	ND	0.13	ND	0.037	
108-05-4	Vinyl Acetate	3.8	1.3	1.1	0.38	
78-93-3	2-Butanone (MEK)	2.1	0.13	0.70	0.045	
156-59-2	cis-1,2-Dichloroethene	ND	0.13	ND	0.034	
67-66-3	Chloroform	0.25	0.13	0.051	0.027	
107-06-2	1,2-Dichloroethane	ND	0.13	ND	0.033	
71-55-6	1,1,1-Trichloroethane	1.3	0.13	0.23	0.025	
71-43-2	Benzene	0.68	0.13	0.21	0.042	
56-23-5	Carbon Tetrachloride	0.40	0.13	0.064	0.021	
78-87-5	1,2-Dichloropropane	ND	0.13	ND	0.029	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

Verified By:	Date:	
•		Page No.:

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 6A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-006

Test Code: EPA TO-15 Date Collected: 3/14/07 Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07 Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: ACC0831

Pi 1 = -1.1 Pf 1 = 3.5

Can D.F. = 1.34

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.13	ND	0.020	
79-01-6	Trichloroethene	0.28	0.13	0.052	0.025	
10061-01-5	cis-1,3-Dichloropropene	ND	0.13	ND	0.030	
108-10-1	4-Methyl-2-pentanone	0.94	0.67	0.23	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.67	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.13	ND	0.025	
108-88-3	Toluene	2.4	0.13	0.64	0.036	
591-78-6	2-Hexanone	0.30	0.13	0.074	0.033	
124-48-1	Dibromochloromethane	ND	0.13	ND	0.016	
106-93-4	1,2-Dibromoethane	ND	0.13	ND	0.017	
123-86-4	n-Butyl Acetate	0.61	0.13	0.13	0.028	
127-18-4	Tetrachloroethene	0.68	0.13	0.10	0.020	
108-90-7	Chlorobenzene	ND	0.13	ND	0.029	
100-41-4	Ethylbenzene	0.41	0.13	0.094	0.031	
179601-23-1	<i>m,p</i> -Xylenes	1.7	0.27	0.39	0.062	
75-25-2	Bromoform	ND	0.13	ND	0.013	
100-42-5	Styrene	0.21	0.13	0.048	0.031	
95-47-6	o-Xylene	0.59	0.13	0.14	0.031	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.13	ND	0.020	
541-73-1	1,3-Dichlorobenzene	ND	0.13	ND	0.022	
106-46-7	1,4-Dichlorobenzene	0.14	0.13	0.024	0.022	
95-50-1	1,2-Dichlorobenzene	ND	0.13	ND	0.022	
120-82-1	1,2,4-Trichlorobenzene	ND	0.13	ND	0.018	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (6)

Verified By:	Date:	
•		Page No.:

RESULTS OF ANALYSIS

Page 1 of 2

Client: Environ International Corporation

Client Sample ID: 7A CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-007

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01153

Pi 1 = -1.3 Pf 1 = 3.8

Can D.F. = 1.38

CAS#	Compound	Result µg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	0.55	0.14	0.27	0.067	
75-01-4	Vinyl Chloride	ND	0.14	ND	0.054	
74-83-9	Bromomethane	ND	0.14	ND	0.036	
75-00-3	Chloroethane	ND	0.14	ND	0.052	
67-64-1	Acetone	8.5	6.9	3.6	2.9	
75-69-4	Trichlorofluoromethane	1.1	0.14	0.19	0.025	
67-63-0	2-Propanol (Isopropyl Alcohol)	1.7	0.14	0.68	0.056	
75-35-4	1,1-Dichloroethene	ND	0.14	ND	0.035	
75-09-2	Methylene chloride	0.36	0.14	0.10	0.040	
76-13-1	Trichlorotrifluoroethane	0.58	0.14	0.076	0.018	
75-15-0	Carbon Disulfide	ND	0.69	ND	0.22	
156-60-5	trans-1,2-Dichloroethene	ND	0.14	ND	0.035	
75-34-3	1,1-Dichloroethane	ND	0.14	ND	0.034	
1634-04-4	Methyl tert-Butyl Ether	ND	0.14	ND	0.038	
108-05-4	Vinyl Acetate	ND	1.4	ND	0.39	
78-93-3	2-Butanone (MEK)	1.3	0.14	0.44	0.047	
156-59-2	cis-1,2-Dichloroethene	ND	0.14	ND	0.035	
67-66-3	Chloroform	0.33	0.14	0.068	0.028	
107-06-2	1,2-Dichloroethane	ND	0.14	ND	0.034	
71-55-6	1,1,1-Trichloroethane	ND	0.14	ND	0.025	
71-43-2	Benzene	0.62	0.14	0.19	0.043	
56-23-5	Carbon Tetrachloride	0.39	0.14	0.061	0.022	
78-87-5	1,2-Dichloropropane	ND	0.14	ND	0.030	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (7)

RESULTS OF ANALYSIS

Page 2 of 2

Client: Environ International Corporation

Client Sample ID: 7A CAS Project ID: P2700736B Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P2700736B-007

Test Code: EPA TO-15 Date Collected: 3/14/07
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: 3/16/07
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AC01153

Pi 1 = -1.3 Pf 1 = 3.8

Can D.F. = 1.38

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.14	ND	0.021	
79-01-6	Trichloroethene	0.19	0.14	0.035	0.026	
10061-01-5	cis-1,3-Dichloropropene	ND	0.14	ND	0.030	
108-10-1	4-Methyl-2-pentanone	ND	0.69	ND	0.17	
10061-02-6	trans-1,3-Dichloropropene	ND	0.69	ND	0.15	
79-00-5	1,1,2-Trichloroethane	ND	0.14	ND	0.025	
108-88-3	Toluene	1.7	0.14	0.45	0.037	
591-78-6	2-Hexanone	0.19	0.14	0.047	0.034	
124-48-1	Dibromochloromethane	ND	0.14	ND	0.016	
106-93-4	1,2-Dibromoethane	ND	0.14	ND	0.018	
123-86-4	n-Butyl Acetate	ND	0.14	ND	0.029	
127-18-4	Tetrachloroethene	0.16	0.14	0.024	0.020	
108-90-7	Chlorobenzene	ND	0.14	ND	0.030	
100-41-4	Ethylbenzene	0.30	0.14	0.070	0.032	
179601-23-1	<i>m,p</i> -Xylenes	1.3	0.28	0.30	0.064	
75-25-2	Bromoform	ND	0.14	ND	0.013	
100-42-5	Styrene	ND	0.14	ND	0.032	
95-47-6	o-Xylene	0.44	0.14	0.10	0.032	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.14	ND	0.020	
541-73-1	1,3-Dichlorobenzene	ND	0.14	ND	0.023	
106-46-7	1,4-Dichlorobenzene	0.14	0.14	0.024	0.023	
95-50-1	1,2-Dichlorobenzene	ND	0.14	ND	0.023	
120-82-1	1,2,4-Trichlorobenzene	ND	0.14	ND	0.019	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:	
•		Page No.:

Siemens - Indoor Air Splg Analytical (2007).xls - Sample (7)

RESULTS OF ANALYSIS Page 1 of 2

Client: Environ International Corporation

Client Sample ID:Method BlankCAS Project ID: P2700736BClient Project ID:Tantau Air Sampling/04-16851BCAS Sample ID: P070327-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
74-87-3	Chloromethane	ND	0.10	ND	0.048	
75-01-4	Vinyl Chloride	ND	0.10	ND	0.039	
74-83-9	Bromomethane	ND	0.10	ND	0.026	
75-00-3	Chloroethane	ND	0.10	ND	0.038	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.10	ND	0.018	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	0.10	ND	0.041	
75-35-4	1,1-Dichloroethene	ND	0.10	ND	0.025	
75-09-2	Methylene chloride	ND	0.10	ND	0.029	
76-13-1	Trichlorotrifluoroethane	ND	0.10	ND	0.013	
75-15-0	Carbon Disulfide	ND	0.50	ND	0.16	
156-60-5	trans-1,2-Dichloroethene	ND	0.10	ND	0.025	
75-34-3	1,1-Dichloroethane	ND	0.10	ND	0.025	
1634-04-4	Methyl tert-Butyl Ether	ND	0.10	ND	0.028	
108-05-4	Vinyl Acetate	ND	1.0	ND	0.28	
78-93-3	2-Butanone (MEK)	ND	0.10	ND	0.034	
156-59-2	cis-1,2-Dichloroethene	ND	0.10	ND	0.025	
67-66-3	Chloroform	ND	0.10	ND	0.020	
107-06-2	1,2-Dichloroethane	ND	0.10	ND	0.025	
71-55-6	1,1,1-Trichloroethane	ND	0.10	ND	0.018	
71-43-2	Benzene	ND	0.10	ND	0.031	
56-23-5	Carbon Tetrachloride	ND	0.10	ND	0.016	
78-87-5	1,2-Dichloropropane	ND	0.10	ND	0.022	

ND = Compound was analyzed for, but not detected above the **laboratory reporting limit**.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
--------------	-------

RESULTS OF ANALYSIS Page 2 of 2

Client: Environ International Corporation

Client Sample ID: Method Blank CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P070327-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA
Analyst: Liliana Marghitoiu Date(s) Analyzed: 3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

D.F. = 1.00

CAS#	Compound	Result μg/m³	MRL μg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-27-4	Bromodichloromethane	ND	0.10	ND	0.015	
79-01-6	Trichloroethene	ND	0.10	ND	0.019	
10061-01-5	cis-1,3-Dichloropropene	ND	0.10	ND	0.022	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.10	ND	0.018	
108-88-3	Toluene	ND	0.10	ND	0.027	
591-78-6	2-Hexanone	ND	0.10	ND	0.024	
124-48-1	Dibromochloromethane	ND	0.10	ND	0.012	
106-93-4	1,2-Dibromoethane	ND	0.10	ND	0.013	
123-86-4	n-Butyl Acetate	ND	0.10	ND	0.021	
127-18-4	Tetrachloroethene	ND	0.10	ND	0.015	
108-90-7	Chlorobenzene	ND	0.10	ND	0.022	
100-41-4	Ethylbenzene	ND	0.10	ND	0.023	
179601-23-1	<i>m,p</i> -Xylenes	ND	0.20	ND	0.046	
75-25-2	Bromoform	ND	0.10	ND	0.0097	
100-42-5	Styrene	ND	0.10	ND	0.023	
95-47-6	o-Xylene	ND	0.10	ND	0.023	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.10	ND	0.015	
541-73-1	1,3-Dichlorobenzene	ND	0.10	ND	0.017	
106-46-7	1,4-Dichlorobenzene	ND	0.10	ND	0.017	
95-50-1	1,2-Dichlorobenzene	ND	0.10	ND	0.017	
120-82-1	1,2,4-Trichlorobenzene	ND	0.10	ND	0.013	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Verified By:	Date:
vermed by:	Date:

Siemens - Indoor Air Splg Analytical (2007).xls - MBlank

RESULTS OF ANALYSIS Page 1 of 1

Client: Environ International Corporation

Client Project ID: Tantau Air Sampling/04-16851B CAS Project ID: P2700736B

Surrogate Spike Recovery Results

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Collected: 3/14/07
Analyst: Liliana Marghitoiu Date Received: 3/16/07
Sampling Media: Summa Canister(s) Date Analyzed: 3/27/07

Test Notes:

		1,2-Dichlor	oethane-d4	Tolue	ne-d8	Bromofluo	robenzene	Data
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	%	Acceptance	Qualifier
		Recovered	Limits	Recovered	Limits	Recovered	Limits	
Method Blank	P070327-MB	91	70-130	103	70-130	104	70-130	
Lab Control Sample	P070327-LCS	95	70-130	101	70-130	105	70-130	
1A	P2700736B-001	89	70-130	101	70-130	105	70-130	
2A	P2700736B-002	91	70-130	101	70-130	105	70-130	
3A	P2700736B-003	90	70-130	102	70-130	105	70-130	
4A	P2700736B-004	90	70-130	101	70-130	105	70-130	
5A	P2700736B-005	90	70-130	101	70-130	104	70-130	
6A	P2700736B-006	90	70-130	101	70-130	104	70-130	
7A	P2700736B-007	90	70-130	102	70-130	105	70-130	

Verified By:Da	ate:
----------------	------

RESULTS OF ANALYSIS Page 1 of 2

Client: Environ International Corporation

Client Sample ID:Lab Control SampleCAS Project ID: P2700736BClient Project ID:Tantau Air Sampling/04-16851BCAS Sample ID: P070327-LCS

Laboratory Control Sample (LCS) Summary

Test Code:EPA TO-15Date Collected:NAInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Date Received:NAAnalyst:Liliana MarghitoiuDate Analyzed:3/27/07

Sampling Media: Summa Canister Volume(s) Analyzed: NA Liter

Test Notes:

CAS#	Compound	Amount Spiked ng	Amount Recovered ng	% Recovery	CAS Acceptance Limits	Data Qualifier
74-87-3	Chloromethane	24.3	22.5	93	65-120	
75-01-4	Vinyl Chloride	24.8	22.8	92	67-127	
74-83-9	Bromomethane	25.0	19.0	76	65-134	
75-00-3	Chloroethane	25.0	23.8	95	71-121	
67-64-1	Acetone	26.5	22.4	85	62-113	
75-69-4	Trichlorofluoromethane	24.3	22.8	94	68-130	
67-63-0	2-Propanol (Isopropyl Alcohol)	24.5	25.2	103	72-119	
75-35-4	1,1-Dichloroethene	27.3	26.3	96	74-126	
75-09-2	Methylene chloride	26.8	22.0	82	68-120	
76-13-1	Trichlorotrifluoroethane	27.0	26.1	97	68-127	
75-15-0	Carbon Disulfide	25.0	23.4	94	69-126	
156-60-5	trans-1,2-Dichloroethene	26.3	25.7	98	76-124	
75-34-3	1,1-Dichloroethane	26.3	23.9	91	75-120	
1634-04-4	Methyl tert-Butyl Ether	26.3	24.8	94	68-123	
108-05-4	Vinyl Acetate	24.3	25.5	105	56-139	
78-93-3	2-Butanone (MEK)	26.8	27.4	102	74-126	
156-59-2	cis-1,2-Dichloroethene	26.5	25.1	95	77-122	
67-66-3	Chloroform	30.0	26.9	90	75-119	
107-06-2	1,2-Dichloroethane	26.0	24.1	93	74-125	
71-55-6	1,1,1-Trichloroethane	26.3	25.1	95	75-129	
71-43-2	Benzene	26.3	24.4	93	69-118	
56-23-5	Carbon Tetrachloride	25.8	26.7	103	72-139	
78-87-5	1,2-Dichloropropane	26.0	25.6	98	75-122	

Verified By:	Date:

RESULTS OF ANALYSIS Page 2 of 2

Client: Environ International Corporation

Client Sample ID: Lab Control Sample CAS Project ID: P2700736B
Client Project ID: Tantau Air Sampling/04-16851B CAS Sample ID: P070327-LCS

0

Laboratory Control Sample (LCS) Summary

0

Test Code: EPA TO-15 Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9 Date Received: NA Analyst: Liliana Marghitoiu Date Analyzed: 3/27/07 Summa Canister Volume(s) Analyzed: Sampling Media: NA Liter

Test Notes:

CAS#	Compound	Amount Spiked	Amount Recovered	%	CAS Acceptance	Data
	Compound	ng	ng	Recovery	Limits	Qualifier
75-27-4	Bromodichloromethane	27.5	27.5	100	79-125	
79-01-6	Trichloroethene	27.3	26.8	98	74-123	
10061-01-5	cis-1,3-Dichloropropene	26.0	27.6	106	81-126	
108-10-1	4-Methyl-2-pentanone	26.5	28.8	109	78-132	
10061-02-6	trans-1,3-Dichloropropene	27.8	30.6	110	80-130	
79-00-5	1,1,2-Trichloroethane	25.8	26.6	103	76-123	
108-88-3	Toluene	26.0	25.1	97	74-124	
591-78-6	2-Hexanone	26.0	30.5	117	77-140	
124-48-1	Dibromochloromethane	26.5	29.7	112	81-139	
106-93-4	1,2-Dibromoethane	26.0	28.8	111	77-133	
123-86-4	n-Butyl Acetate	25.0	30.3	121	71-146	
127-18-4	Tetrachloroethene	25.8	26.0	101	71-135	
108-90-7	Chlorobenzene	26.0	25.6	98	76-126	
100-41-4	Ethylbenzene	25.8	26.1	101	77-127	
179601-23-1	m,p-Xylenes	61.5	62.3	101	77-128	
75-25-2	Bromoform	31.3	36.3	116	77-143	
100-42-5	Styrene	25.8	29.9	116	71-139	
95-47-6	o-Xylene	29.0	29.7	102	76-128	
79-34-5	1,1,2,2-Tetrachloroethane	29.3	30.4	104	79-130	
541-73-1	1,3-Dichlorobenzene	25.3	25.9	102	73-137	
106-46-7	1,4-Dichlorobenzene	26.0	26.6	102	71-136	
95-50-1	1,2-Dichlorobenzene	25.5	26.2	103	70-140	
120-82-1	1,2,4-Trichlorobenzene	26.8	32.3	121	68-154	

Verified By:	Date:

Appendix B Canister Media Certification Reports

Canister Number: 6L# 6L# 05700w/24hr# 40496

Can#: 95129-05700 Date: 02/12/14 3:48 Data File: 0021124.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	101.00	% Recovery

Canister Number: 6L# 6L# 11887w/24hr# 40654

Can#: 95129-11887 Date: 02/12/14 8:34 Data File: 0021129.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	98.00	% Recovery

Canister Number: 6L# 6L# 12010w/24hr# 40699

Can#: 95129-12010 Date: 02/11/14 22:05 Data File: 0021113.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	100.00	% Recovery

Canister Number: 6L# 6L# 12695w/24hr# 40098

Can#: 95129-12695 Date: 02/12/14 2:17 Data File: 0021121.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	102.00	% Recovery

Canister Number: 6L# 6L# 12936w/24hr# 30588

Can#: 95129-12936 Date: 02/11/14 23:45 Data File: 0021116.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	101.00	% Recovery

Canister Number: 6L# 1625 w/24hr# 40223

Can#: 95129-1625 Date: 02/11/14 13:29 Data File: i021107sim.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
Chloroform	67-66-3	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Freon 113	76-13-1	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
1,2-Dichloroethane-d4	17060-07-0	97.00	% Recovery
Toluene-d8	2037-26-5	106.00	% Recovery
4-Bromofluorobenzene	460-00-4	97.00	% Recovery

Canister Number: 6L# 6L# 21009w/24hr# 40574

Can#: 95129-21009 Date: 02/11/14 21:03 Data File: 0021111.d

1-800-985-5955
Name

www.airtoxics.com

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	96.00	% Recovery

Canister Number: 6L# 6L# 31426w/24hr# 40131

Can#: 95129-31426 Date: 02/11/14 19:33 Data File: 0021108.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	100.00	% Recovery

Canister Number: 6L# 6L# 32114w/24hr# 40207

Can#: 95129-32114 Date: 02/11/14 18:32 Data File: 0021106.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	99.00	% Recovery

Canister Number: 6L# 6L# 33776w/24hr# 40245

Can#: 95129-33776 Date: 02/11/14 21:35 Data File: 0021112.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	100.00	% Recovery

Canister Number: 6L# 6L# 33865w/24hr# 40055

Can#: 95129-33865 Date: 02/12/14 9:35 Data File: 0021131.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	100.00	% Recovery

Canister Number: 6L# 6L# 34027w/24hr# 40589

Can#: 95129-34027 Date: 02/12/14 0:15 Data File: 0021117.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	103.00	% Recovery

Canister Number: 6L# 6L# 34233w/24hr# 30592

Can#: 95129-34233 Date: 02/11/14 20:03 Data File: 0021109.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	99.00	% Recovery

Canister Number: 6L# 6L# 34375w/24hr# 30553

Can#: 95129-34375 Date: 02/12/14 6:07 Data File: 0021128.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	96.00	% Recovery

Canister Number: 6L# 6L# 34459w/24hr# 40069

Can#: 95129-34459 Date: 02/11/14 19:02 Data File: 0021107.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	98.00	% Recovery

Canister Number: 6L# 6L# 34476w/24hr# 40176

Can#: 95129-34476 Date: 02/11/14 20:33 Data File: 0021110.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	101.00	% Recovery

Canister Number: 6L# 34497 w/24hr# 40181

Can#: 95129-34497 Date: 02/11/14 14:06 Data File: i021108sim.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
Chloroform	67-66-3	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Freon 113	76-13-1	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
1,2-Dichloroethane-d4	17060-07-0	93.00	% Recovery
Toluene-d8	2037-26-5	102.00	% Recovery
4-Bromofluorobenzene	460-00-4	101.00	% Recovery

Canister Number: 6L# 6L# 34734w/24hr# 40234

Can#: 95129-34734 Date: 02/12/14 1:18 Data File: 0021119.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	104.00	% Recovery

Canister Number: 6L# 34761 w/24hr# 40008

Can#: 95129-34761 Date: 02/11/14 11:41 Data File: i021106sim.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
Chloroform	67-66-3	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Freon 113	76-13-1	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
1,2-Dichloroethane-d4	17060-07-0	98.00	% Recovery
Toluene-d8	2037-26-5	102.00	% Recovery
4-Bromofluorobenzene	460-00-4	98.00	% Recovery

Canister Number: 6L# 6L# 35134w/24hr# 30551

Can#: 95129-35134 Date: 02/12/14 4:50 Data File: 0021126.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	99.00	% Recovery

Canister Number: 6L# 6L# 3729w/24hr# 100166

Can#: 95129-3729 Date: 02/12/14 10:35 Data File: 0021133.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	100.00	% Recovery

Canister Number: 6L# 6L# 4387w/24hr# 40646

Can#: 95129-4387 Date: 02/11/14 23:16 Data File: 0021115.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	97.00	% Recovery

Canister Number: 6L# 6L# 5594w/24hr# 40399

Can#: 95129-5594 Date: 02/12/14 0:46 Data File: 0021118.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	103.00	% Recovery

Canister Number: 6L# 6L# 5626w/24hr# 30590

Can#: 95129-5626 Date: 02/11/14 22:35 Data File: 0021114.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	95.00	% Recovery

Canister Number: 6L# 6L# 5664w/24hr# 40622

Can#: 95129-5664 Date: 02/11/14 18:02 Data File: 0021105.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	99.00	% Recovery

Canister Number: 6L# 6L# 5767w/24hr# 40341

Can#: 95129-5767 Date: 02/12/14 4:19 Data File: 0021125.d

Name	CAS	Conc.	Units	
Toluene	108-88-3	ND	ppbv	
Tetrachloroethene	127-18-4	ND	ppbv	
cis-1,2-Dichloroethene	156-59-2	ND	ppbv	
trans-1,2-Dichloroethene	156-60-5	ND	ppbv	
1,1,1-Trichloroethane	71-55-6	ND	ppbv	
Vinyl Chloride	75-01-4	ND	ppbv	
1,1-Dichloroethane	75-34-3	ND	ppbv	
1,1-Dichloroethene	75-35-4	ND	ppbv	
Trichloroethene	79-01-6	ND	ppbv	
4-Bromofluorobenzene	460-00-4	102.00	% Recovery	

Canister Number: 6L# 6L0046 w/24hr# 40028

Can#: 95129-6L0046 Date: 02/11/14 14:43 Data File: i021109sim.d

Name	CAS	Conc.	Units	
Toluene	108-88-3	ND	ppbv	
Tetrachloroethene	127-18-4	ND	ppbv	
cis-1,2-Dichloroethene	156-59-2	ND	ppbv	
trans-1,2-Dichloroethene	156-60-5	ND	ppbv	
Chloroform	67-66-3	ND	ppbv	
1,1,1-Trichloroethane	71-55-6	ND	ppbv ppbv ppbv ppbv	
Vinyl Chloride	75-01-4	ND		
1,1-Dichloroethane	75-34-3	ND		
1,1-Dichloroethene	75-35-4	ND		
Freon 113	76-13-1	ND	ppbv	
Trichloroethene	79-01-6	ND	ppbv	
1,2-Dichloroethane-d4	17060-07-0	94.00	% Recovery	
Toluene-d8	2037-26-5	102.00	% Recovery	
4-Bromofluorobenzene	460-00-4	96.00	% Recovery	

Canister Number: 6L# 6L# 9925w/24hr# 40968

Can#: 95129-9925 Date: 02/12/14 3:18 Data File: 0021123.d

Name	CAS	Conc.	Units
Toluene	108-88-3	ND	ppbv
Tetrachloroethene	127-18-4	ND	ppbv
cis-1,2-Dichloroethene	156-59-2	ND	ppbv
trans-1,2-Dichloroethene	156-60-5	ND	ppbv
1,1,1-Trichloroethane	71-55-6	ND	ppbv
Vinyl Chloride	75-01-4	ND	ppbv
1,1-Dichloroethane	75-34-3	ND	ppbv
1,1-Dichloroethene	75-35-4	ND	ppbv
Trichloroethene	79-01-6	ND	ppbv
4-Bromofluorobenzene	460-00-4	102.00	% Recovery

Appendix C Indoor Air Sampling Form – Summa Canisters

INDOOR AIR SAMPLING FORM—SUMMA CANISTERS

Page 1 of ___

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Sampled by:(S M
Project and Task No.:	Date: $\frac{2/(6/14-0)17/4}{}$
Project Name: SMI	Weather: Sonny 4 65°
Project Address: 19,000 Flomested	AAGGIIC.

		Comple				Start Sampling		End Sampling	
		Sample Type (indoor or	Summa Canister ID	Flow Controller ID	Analysis	Time	Canister Vacuum	Time	Canister Vacuum
Sample ID	Date	ambient)		30551	TO 18 SIM	2601	-30-29	1045	-5
5MI-0A1-201402		exmovered	340 33	40069		1036	-30	1647	- 3
<u>u-642-2019001</u>	3 2/16/14	ambient	200 T	40207	A constraint of the constraint	1327	-790	1333	->5-6.5
-5401-201402 ib	<u> </u>	171000	05700			1328	-30-09	1398	-5-
1-7A00-2014018	7/16/14	indoor	34375	30553		1330	-29	1213	-6.5
T403-20140318	2/16/14	indoor (F		40176		1331	-30	1211	Ø
IACH-20140218	2/16/14	FAdoor	35734 V	40098		1333	-30	1304	-6
E-TAOS-20140216	21/6/14	indoor	9975	30592		1317	-30	1347	-9.5
-TAG6-20140016	2/16/14	indoor 6	5767	46341		1335	-29	1257	Ø
IA07-20140216		[ndoor	5594	40399			-295	1335	-6
I IAG8-DO140216	2//6/14	indoor	3476[100339		1336	-38	1335	-5.5
1-14080-20140016	2/16/14		34734	140234		133G	-30	1343	-9.5
I-IA10 -2014621	7/6/14	indoor	12695	40672		1339		1253	
I-1416-2014621	2//6/14		-	40181		1340	-27		-6
I IAG9-2014 6016	0/10/19	indoor (F		46131		1345	-01	1217	

Tubing volume/linear foot (in cc) calculated by:

95.76 x [tubing diameter (in cm)/2]²

INDOOR AIR SAMPLING FORM—SUMMA CANISTERS

Page 1 of ___

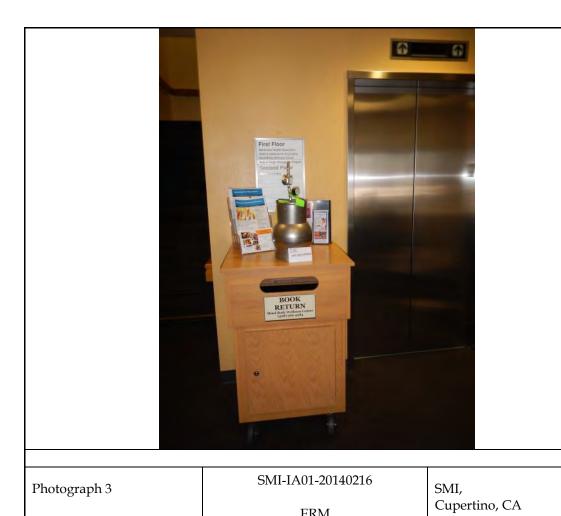
	Co Marine	
Project and Task No.:	<u>Galor 0201040, 0156</u>	Sampled by:
Project Name:	SMI	Date:
Project Address:	19,000 Homstead	Weather:

			Sample				Start Sa	ımpling	End Sa	mpling	
	Sample ID	Date	Type (indoor or ambient)	Summa Canister ID	Flow Controller ID	Analysis	Time	Canister Vacuum	Time	Canister Vacuum	
SMP-	IAB9D-201402LE	2/16/14		32114	100166	7a-15 SIM	1342	- 30	1217	-65	\
	IA12-2014601			-21001	40574	aggreen and the second	1347	-30	1224	-7	
	I413-2014021			4387	40028		1359	-38	1308	-7	
	IA14-20140216		indoor	TV 25 7	40496		1906	- 30	1115	-7	/
	TA15-20140216		indocr(E)	102	40245		1204	-28	1102	D	\
	TA161-20140216		indoor	5686	30590		1213	-99	H1-21144	-Arm 6	(
, –	IA16-20140218	-	1	34476	40406		1999	-30	1127	- 7	
	IA00-0014001			34459 V	40968		1999	-29	1107	- 9	_
	JA17-201462		l		40223	and the second s	1230	-30	1137	-200 -6,	>
	KOP105-31AI-			33776 V	140055		1323	-29	1134	-75	
	IA23-2014626	Γ- /	indear	34027	40589		1240	-3e	159	-6.5	
	-IA21-20140%		indoor	12936	,30588		じてん	-29	1205	-C	/
	-IA20-20146216		(1)905×	11887	40654		1750	-29	1148	-6	7
	-TA 22-2014 6316	1	indeer	17010 V	40699	W :	1958	-78'	1311	-7:5	/

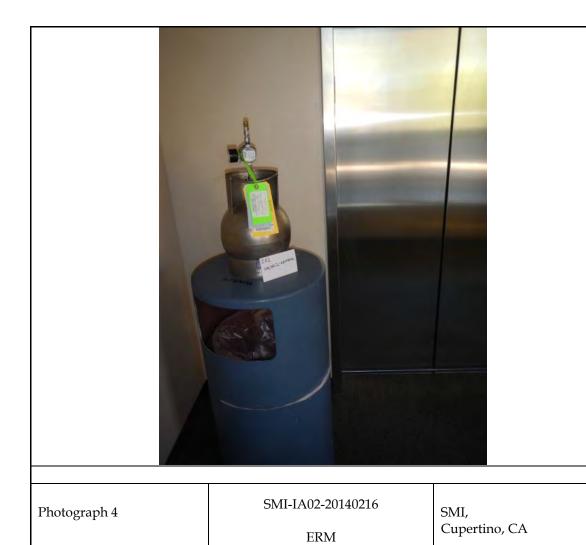

Tubing volume/linear foot (in cc) calculated by:

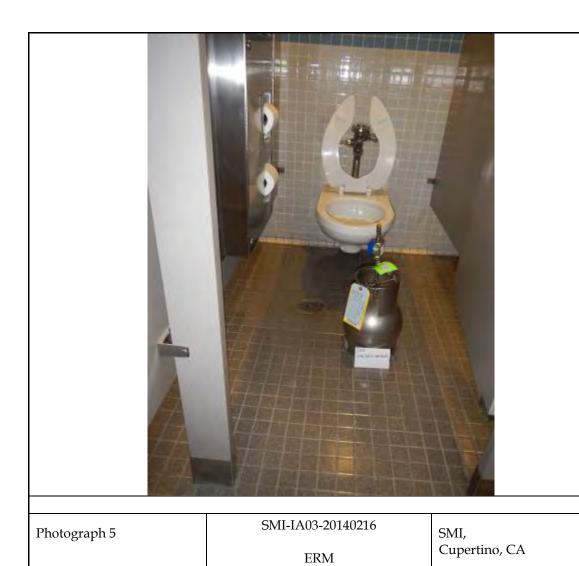
95.76 x [tubing diameter (in cm)/2]²

Appendix D Sample Location Photo Log

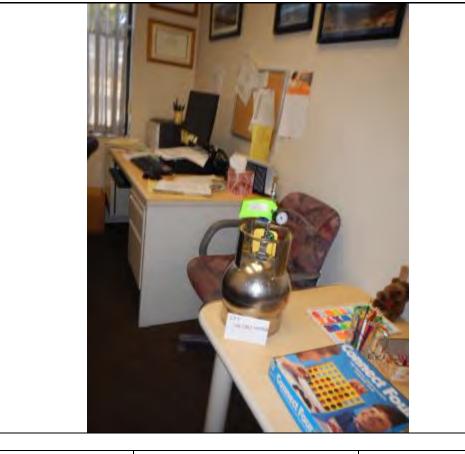


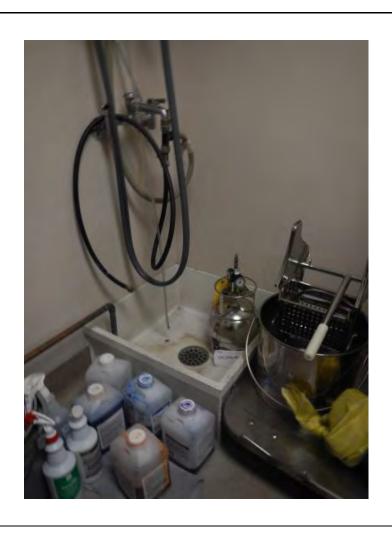
Photograph 1 SMI-OA1-20140216 SMI, Cupertino, CA




SMI-0A2-20140216


ERM


ERM



Photograph 6 SMI-IA04-20140216 SMI, Cupertino, CA

SMI-IA05-20140216

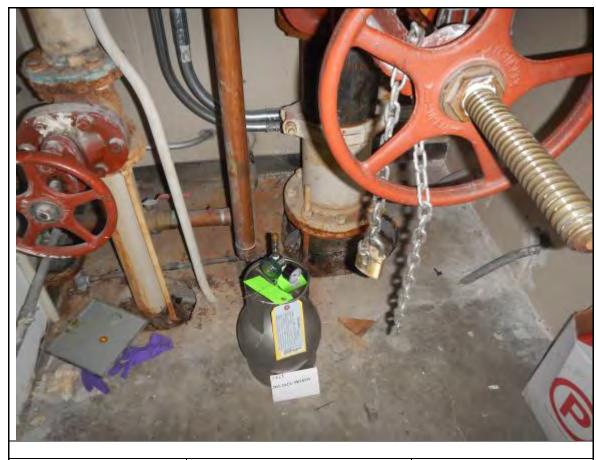
ERM

Photograph 8 SMI-IA06-20140216 SMI, Cupertino, CA

Photograph 9 SMI-IA07-20140216 SMI, Cupertino, CA

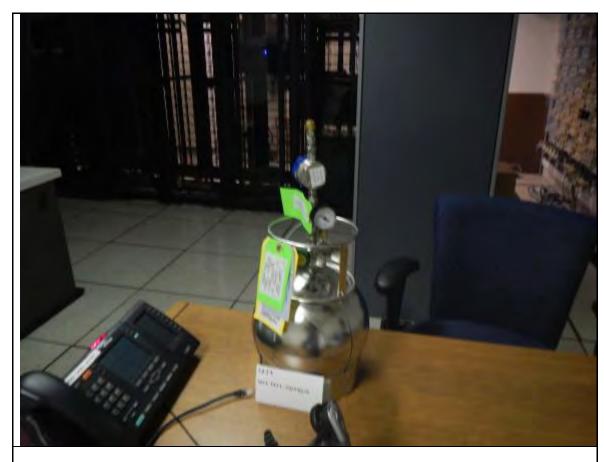
Photograph 10 SMI-IA08-20140216 SMI, Cupertino, CA

SMI-IA09-20140216


ERM

ERM

ERM


SMI-IA12-20140216

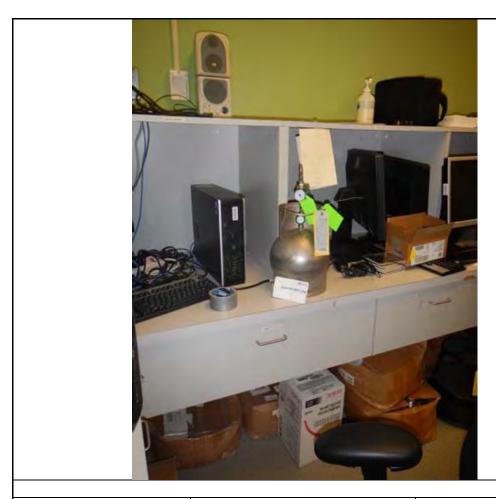
ERM

SMI-IA13-20140216

ERM

Photograph 16
SMI-IA14-20140216
ERM
SMI,
Cupertino, CA

SMI-IA15-20140216


ERM

SMI-IA16-20140216

ERM

SMI-IA18-20140216

ERM

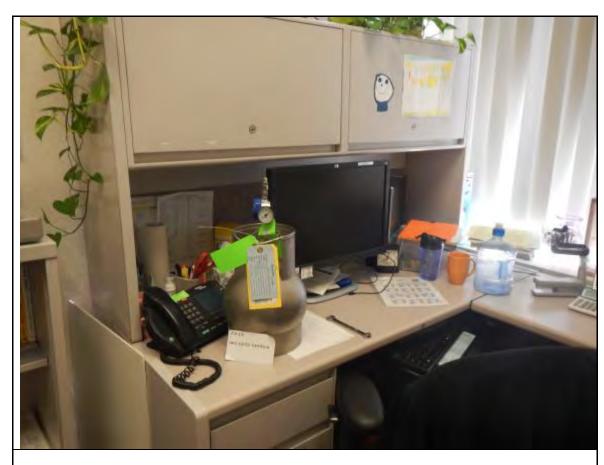
Photograph 21

SMI-IA19-20140216

ERM

SMI,

Cupertino, CA


SMI-IA20-20140216 Photograph 22 ERM

		T
Photograph 23	SMI-IA21-20140216	SMI,
	ERM	Cupertino, CA

SMI-IA22-20140216 ERM

Photograph 25
SMI-IA23-20140216
ERM
SMI,
Cupertino, CA

Appendix E Laboratory Analytical Reports

3/5/2014 Mr. Conor McDonough ERM-West 1277 Treat Blvd Suite 500 Walnut Creek CA 94597

Project Name: SMI

Project #: 0201040.01SC Workorder #: 1402298

Dear Mr. Conor McDonough

The following report includes the data for the above referenced project for sample(s) received on 2/19/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1402298

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West
1277 Treat Blvd
Suite 500

ERM-West
1277 Treat Blvd
Suite 500

Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 **PROJECT** # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 03/05/2014

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SMI-OA1-20140216	Modified TO-15	4.5 "Hg	5 psi
01B	SMI-OA1-20140216	Modified TO-15	4.5 "Hg	5 psi
02A	SMI-OA2-20140216	Modified TO-15	2.5 "Hg	5 psi
02B	SMI-OA2-20140216	Modified TO-15	2.5 "Hg	5 psi
03A	SMI-IA01-20140216	Modified TO-15	6.5 "Hg	5 psi
03B	SMI-IA01-20140216	Modified TO-15	6.5 "Hg	5 psi
04A	SMI-IA02-20140216	Modified TO-15	4.5 "Hg	5 psi
04B	SMI-IA02-20140216	Modified TO-15	4.5 "Hg	5 psi
05A	SMI-IA03-20140216	Modified TO-15	6.0 "Hg	5 psi
05B	SMI-IA03-20140216	Modified TO-15	6.0 "Hg	5 psi
06A	SMI-IA04-20140216	Modified TO-15	0.0 "Hg	5 psi
06B	SMI-IA04-20140216	Modified TO-15	0.0 "Hg	5 psi
07A	SMI-IA05-20140216	Modified TO-15	6.0 "Hg	5 psi
07B	SMI-IA05-20140216	Modified TO-15	6.0 "Hg	5 psi
08A	SMI-IA06-20140216	Modified TO-15	9.5 "Hg	5 psi
08B	SMI-IA06-20140216	Modified TO-15	9.5 "Hg	5 psi
09A	SMI-IA07-20140216	Modified TO-15	0.0 "Hg	5 psi
09B	SMI-IA07-20140216	Modified TO-15	0.0 "Hg	5 psi
10A	SMI-IA08-20140216	Modified TO-15	6.0 "Hg	5 psi
10B	SMI-IA08-20140216	Modified TO-15	6.0 "Hg	5 psi
11A	Lab Blank	Modified TO-15	NA	NA
11B	Lab Blank	Modified TO-15	NA	NA
11C	Lab Blank	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1402298

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West
1277 Treat Blvd
Suite 500

ERM-West
1277 Treat Blvd
Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 PROJECT # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 03/05/2014

FINAL RECEIPT FRACTION# **TEST** VAC./PRES. **PRESSURE NAME** 11D Lab Blank Modified TO-15 NA NA **CCV** Modified TO-15 12A NA NA 12B **CCV** Modified TO-15 NA NA 12C **CCV** Modified TO-15 NA NA 12D **CCV** Modified TO-15 NA NA 13A LCS Modified TO-15 NA NA Modified TO-15 13AA LCSD NA NA Modified TO-15 13B LCS NA NA 13BB **LCSD** Modified TO-15 NA NA Modified TO-15 13C LCS NA NA 13CC **LCSD** Modified TO-15 NA NA 13D LCS Modified TO-15 NA NA 13DD **LCSD** Modified TO-15 NA NA

	fleide pages	
CERTIFIED BY:		DATE: 03/05/14
CERTIFIED DIT		2.112. <u> </u>

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. $180\ BLUE\ RAVINE\ ROAD,\ SUITE\ B\ FOLSOM,\ CA-9563$

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM ERM-West Workorder# 1402298

Ten 6 Liter Summa Canister (SIM Certified) samples were received on February 19, 2014. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Despite the use of flow controllers for sample collection, the final canister vacuums for samples SMI-IA04-20140216 and SMI-IA07-20140216 were measured at ambient pressure in the field. These ambient pressure readings were confirmed by the laboratory upon sample receipt.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SMI-OA1-20140216

Lab ID#: 1402298-01A
No Detections Were Found.

Client Sample ID: SMI-OA1-20140216

Lab ID#: 1402298-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Toluene	0.032	0.30	0.12	1.2	

Client Sample ID: SMI-OA2-20140216

Lab ID#: 1402298-02A
No Detections Were Found.

Client Sample ID: SMI-OA2-20140216

Lab ID#: 1402298-02B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Toluene	0.029	0.29	0.11	1.1	

Client Sample ID: SMI-IA01-20140216

Lab ID#: 1402298-03A
No Detections Were Found.

Client Sample ID: SMI-IA01-20140216

Lab ID#: 1402298-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Trichloroethene	0.034	0.048	0.18	0.26	_
Toluene	0.034	0.37	0.13	1.4	

Client Sample ID: SMI-IA02-20140216

Lab ID#: 1402298-04A
No Detections Were Found.

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SMI-IA02-20140216

Lab ID#: 1402298-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,1,1-Trichloroethane	0.032	0.035	0.17	0.19
Trichloroethene	0.032	0.045	0.17	0.24
Toluene	0.032	0.40	0.12	1.5

Client Sample ID: SMI-IA03-20140216

Lab ID#: 1402298-05A
No Detections Were Found.

Client Sample ID: SMI-IA03-20140216

Lab ID#: 1402298-05B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Trichloroethene	0.034	0.052	0.18	0.28
Toluene	0.034	0.46	0.13	1.7

Client Sample ID: SMI-IA04-20140216

Lab ID#: 1402298-06A
No Detections Were Found.

Client Sample ID: SMI-IA04-20140216

Lab ID#: 1402298-06B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.027	0.030	0.15	0.16
Trichloroethene	0.027	0.076	0.14	0.41
Toluene	0.027	0.43	0.10	1.6

Client Sample ID: SMI-IA05-20140216

Lab ID#: 1402298-07A
No Detections Were Found.

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SMI-IA05-20140216

Lab ID#: 1402298-07B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.034	0.036	0.18	0.20
Trichloroethene	0.034	0.084	0.18	0.45
Toluene	0.034	0.40	0.13	1.5

Client Sample ID: SMI-IA06-20140216

Lab ID#: 1402298-08A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Chloroform	0.20	0.96	0.96	4.7	

Client Sample ID: SMI-IA06-20140216

Lab ID#: 1402298-08B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	_
1,1,1-Trichloroethane	0.039	0.21	0.21	1.2	
Toluene	0.039	0.47	0.15	1.8	
Tetrachloroethene	0.039	0.16	0.26	1.1	

Client Sample ID: SMI-IA07-20140216

Lab ID#: 1402298-09A
No Detections Were Found.

Client Sample ID: SMI-IA07-20140216

Lab ID#: 1402298-09B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1-Dichloroethene	0.013	0.014	0.053	0.056	
1,1,1-Trichloroethane	0.027	0.082	0.15	0.45	
Toluene	0.027	0.33	0.10	1.3	
Tetrachloroethene	0.027	0.029	0.18	0.20	

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: SMI-IA08-20140216

Lab ID#: 1402298-10A
No Detections Were Found.

Client Sample ID: SMI-IA08-20140216

Lab ID#: 1402298-10B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	0.034	0.30	0.13	1.1

Client Sample ID: SMI-OA1-20140216

Lab ID#: 1402298-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022607	Date of Collection: 2/17/14 10:45:00 AM
Dil. Factor:	1.58	Date of Analysis: 2/26/14 12:50 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.16	Not Detected	1.2	Not Detected
Chloroform	0.16	Not Detected	0.77	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: SMI-OA1-20140216 Lab ID#: 1402298-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022607sim	Date of Collection: 2/17/14 10:45:00 AM
Dil. Factor:	1.58	Date of Analysis: 2/26/14 12:50 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
1,1-Dichloroethane	0.032	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
1,1,1-Trichloroethane	0.032	Not Detected	0.17	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Toluene	0.032	0.30	0.12	1.2
Tetrachloroethene	0.032	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: SMI-OA2-20140216

Lab ID#: 1402298-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022515	Date of Collection: 2/17/14 10:47:00 AM
Dil. Factor:	1.46	Date of Analysis: 2/25/14 08:33 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.15	Not Detected	1.1	Not Detected
Chloroform	0.15	Not Detected	0.71	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SMI-OA2-20140216 Lab ID#: 1402298-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022515sim	Date of Collection: 2/17/14 10:47:00 AM
Dil. Factor:	1.46	Date of Analysis: 2/25/14 08:33 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.037	Not Detected
1,1-Dichloroethene	0.015	Not Detected	0.058	Not Detected
1,1-Dichloroethane	0.029	Not Detected	0.12	Not Detected
cis-1,2-Dichloroethene	0.029	Not Detected	0.12	Not Detected
1,1,1-Trichloroethane	0.029	Not Detected	0.16	Not Detected
Trichloroethene	0.029	Not Detected	0.16	Not Detected
Toluene	0.029	0.29	0.11	1.1
Tetrachloroethene	0.029	Not Detected	0.20	Not Detected
trans-1.2-Dichloroethene	0.15	Not Detected	0.58	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: SMI-IA01-20140216

Lab ID#: 1402298-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

	Dut Limit	Amount Dot Limit Amou	4
Dil. Factor:	1.71	Date of Analysis: 2/25/14 09:16 PM	VI
File Name:	c022516	Date of Collection: 2/17/14 1:52:00	0 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.83	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SMI-IA01-20140216

Lab ID#: 1402298-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022516sim	Date of Collection: 2/17/14 1:52:00 PM
Dil. Factor:	1.71	Date of Analysis: 2/25/14 09:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.068	Not Detected
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.034	Not Detected	0.19	Not Detected
Trichloroethene	0.034	0.048	0.18	0.26
Toluene	0.034	0.37	0.13	1.4
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SMI-IA02-20140216

Lab ID#: 1402298-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022517	Date of Collection: 2/17/14 1:28:00 PM
Dil. Factor:	1.58	Date of Analysis: 2/25/14 09:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.16	Not Detected	1.2	Not Detected
Chloroform	0.16	Not Detected	0.77	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: SMI-IA02-20140216

Lab ID#: 1402298-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022517sim	Date of Collection: 2/17/14 1:28:00 PM
Dil. Factor:	1.58	Date of Analysis: 2/25/14 09:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.063	Not Detected
1,1-Dichloroethane	0.032	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
1,1,1-Trichloroethane	0.032	0.035	0.17	0.19
Trichloroethene	0.032	0.045	0.17	0.24
Toluene	0.032	0.40	0.12	1.5
Tetrachloroethene	0.032	Not Detected	0.21	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: SMI-IA03-20140216

Lab ID#: 1402298-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022518	Date of Collection: 2/17/14 12:13:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/25/14 10:33 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SMI-IA03-20140216

Lab ID#: 1402298-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022518sim	Date of Collection: 2/17/14 12:13:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/25/14 10:33 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.034	Not Detected	0.18	Not Detected
Trichloroethene	0.034	0.052	0.18	0.28
Toluene	0.034	0.46	0.13	1.7
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SMI-IA04-20140216

Lab ID#: 1402298-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022519	Date of Collection: 2/17/14 12:11:00 PM
Dil. Factor:	1.34	Date of Analysis: 2/26/14 06:43 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
	W.1. /	Not Detected	()	Not Detected
Freon 113 Chloroform	0.13 0.13	Not Detected	1.0 0.65	Not Detected Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SMI-IA04-20140216

Lab ID#: 1402298-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022519sim	Date of Collection: 2/17/14 12:11:00 PM
Dil. Factor:	1.34	Date of Analysis: 2/26/14 06:43 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	Not Detected	0.053	Not Detected
1,1-Dichloroethane	0.027	Not Detected	0.11	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
1,1,1-Trichloroethane	0.027	0.030	0.15	0.16
Trichloroethene	0.027	0.076	0.14	0.41
Toluene	0.027	0.43	0.10	1.6
Tetrachloroethene	0.027	Not Detected	0.18	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SMI-IA05-20140216

Lab ID#: 1402298-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022520 1.68		te of Collection: 2/17 te of Analysis: 2/26/1	
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected

		Wetnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SMI-IA05-20140216

Lab ID#: 1402298-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022520sim	Date of Collection: 2/17/14 1:04:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/26/14 07:34 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.034	0.036	0.18	0.20
Trichloroethene	0.034	0.084	0.18	0.45
Toluene	0.034	0.40	0.13	1.5
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1.2-Dichloroethene	0.17	Not Detected	0.67	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: SMI-IA06-20140216

Lab ID#: 1402298-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022608	Date of Collection: 2/17/14 1:47:00 PM
Dil. Factor:	1.96	Date of Analysis: 2/26/14 01:31 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.20	Not Detected	1.5	Not Detected
Chloroform	0.20	0.96	0.96	4.7

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: SMI-IA06-20140216

Lab ID#: 1402298-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022608sim	Date of Collection: 2/17/14 1:47:00 PM
Dil. Factor:	1.96	Date of Analysis: 2/26/14 01:31 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.078	Not Detected
1,1-Dichloroethane	0.039	Not Detected	0.16	Not Detected
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
1,1,1-Trichloroethane	0.039	0.21	0.21	1.2
Trichloroethene	0.039	Not Detected	0.21	Not Detected
Toluene	0.039	0.47	0.15	1.8
Tetrachloroethene	0.039	0.16	0.26	1.1
trans-1.2-Dichloroethene	0.20	Not Detected	0.78	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SMI-IA07-20140216

Lab ID#: 1402298-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022609	Date of Collection: 2/17/14 12:57:00 PM
Dil. Factor:	1.34	Date of Analysis: 2/26/14 02:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
	W.1. /	Not Detected	()	Not Detected
Freon 113 Chloroform	0.13 0.13	Not Detected	1.0 0.65	Not Detected Not Detected

••	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SMI-IA07-20140216

Lab ID#: 1402298-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022609sim	Date of Collection: 2/17/14 12:57:00 PM
Dil. Factor:	1.34	Date of Analysis: 2/26/14 02:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	0.014	0.053	0.056
1,1-Dichloroethane	0.027	Not Detected	0.11	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
1,1,1-Trichloroethane	0.027	0.082	0.15	0.45
Trichloroethene	0.027	Not Detected	0.14	Not Detected
Toluene	0.027	0.33	0.10	1.3
Tetrachloroethene	0.027	0.029	0.18	0.20
trans-1.2-Dichloroethene	0.13	Not Detected	0.53	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: SMI-IA08-20140216

Lab ID#: 1402298-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022610 1.68	Date of Collection: 2/17/14 1:35:00 PM Date of Analysis: 2/26/14 03:03 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: SMI-IA08-20140216

Lab ID#: 1402298-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022610sim	Date of Collection: 2/17/14 1:35:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/26/14 03:03 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.034	Not Detected	0.18	Not Detected
Trichloroethene	0.034	Not Detected	0.18	Not Detected
Toluene	0.034	0.30	0.13	1.1
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

4-Bromofluorobenzene

Client Sample ID: Lab Blank Lab ID#: 1402298-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022506 1.00		of Collection: NA of Analysis: 2/25	/14 11·48 AM
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)
Freon 113	0.10	Not Detected	0.77	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Container Type: NA - Not App	olicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		97		70-130
Toluene-d8		100		70-130

96

70-130

Client Sample ID: Lab Blank Lab ID#: 1402298-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022506sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 11:48 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

		Metnod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: Lab Blank Lab ID#: 1402298-11C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

WOI	DIFIED EI A METHOD I	O-15 GC/MD DIM/I	CLL BEAR	
File Name:	c022606	Date	of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 2/26/14 11:59 AM		/14 11:59 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.10	Not Detected	0.77	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Container Type: NA - Not App	plicable			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		94		70-130
Toluene-d8		100		70-130
4-Bromofluorobenzene		98		70-130

Client Sample ID: Lab Blank Lab ID#: 1402298-11D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022606sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/26/14 11:59 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: CCV Lab ID#: 1402298-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 08:36 AM

 Compound
 %Recovery

 Freon 113
 104

 Chloroform
 104

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: CCV Lab ID#: 1402298-12B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022502sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 08:36 AM

Compound	%Recovery	
Vinyl Chloride	92	
1,1-Dichloroethene	106	
1,1-Dichloroethane	105	
cis-1,2-Dichloroethene	110	
1,1,1-Trichloroethane	110	
Trichloroethene	103	
Toluene	105	
Tetrachloroethene	110	
trans-1,2-Dichloroethene	107	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: CCV Lab ID#: 1402298-12C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/26/14 08:52 AM

Compound	%Recovery	
Freon 113	104	
Chloroform	102	

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: CCV Lab ID#: 1402298-12D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022602sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/26/14 08:52 AM

Compound	%Recovery	
Vinyl Chloride	89	
1,1-Dichloroethene	106	
1,1-Dichloroethane	104	
cis-1,2-Dichloroethene	109	
1,1,1-Trichloroethane	109	
Trichloroethene	103	
Toluene	105	
Tetrachloroethene	110	
trans-1,2-Dichloroethene	106	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: LCS Lab ID#: 1402298-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 09:25 AM

Compound	%Recovery	Method Limits
Freon 113	122	70-130
Chloroform	107	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1402298-13AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022504	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 10:07 AM

Compound	%Recovery	Method Limits
Freon 113	124	70-130
Chloroform	108	70-130

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	107	70-130	

Client Sample ID: LCS Lab ID#: 1402298-13B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022503sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 09:25 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	94	70-130
1,1-Dichloroethene	121	70-130
1,1-Dichloroethane	109	70-130
cis-1,2-Dichloroethene	127	70-130
1,1,1-Trichloroethane	110	70-130
Trichloroethene	107	70-130
Toluene	108	70-130
Tetrachloroethene	112	70-130
trans-1,2-Dichloroethene	94	60-140

урогия потприна		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: LCSD Lab ID#: 1402298-13BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022504sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 10:07 AM

	Wethod
%Recovery	Limits
94	70-130
122	70-130
110	70-130
129	70-130
111	70-130
108	70-130
111	70-130
112	70-130
95	60-140
	122 110 129 111 108 111 112

остание туротти постъррнович	Method	
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	111	70-130

Client Sample ID: LCS Lab ID#: 1402298-13C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022603	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/26/14 09:37 AM

Compound	%Recovery	Method Limits
Freon 113	119	70-130
Chloroform	105	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCSD Lab ID#: 1402298-13CC

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/26/14 10:19 AM

Compound	%Recovery	Method Limits
Freon 113	127	70-130
Chloroform	109	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: LCS Lab ID#: 1402298-13D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022603sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/26/14 09:37 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	94	70-130
1,1-Dichloroethene	123	70-130
1,1-Dichloroethane	111	70-130
cis-1,2-Dichloroethene	128	70-130
1,1,1-Trichloroethane	112	70-130
Trichloroethene	108	70-130
Toluene	109	70-130
Tetrachloroethene	113	70-130
trans-1,2-Dichloroethene	95	60-140

урагия предостава	Method	
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: LCSD Lab ID#: 1402298-13DD

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: c022604sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/26/14 10:19 AM

		Method	
Compound	%Recovery	Limits	
Vinyl Chloride	92	70-130	
1,1-Dichloroethene	122	70-130	
1,1-Dichloroethane	109	70-130	
cis-1,2-Dichloroethene	127	70-130	
1,1,1-Trichloroethane	111	70-130	
Trichloroethene	108	70-130	
Toluene	109	70-130	
Tetrachloroethene	113	70-130	
trans-1,2-Dichloroethene	94	60-140	

остание турстии постарривание		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	106	70-130

N. OX.CS

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Helinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page of 3

1402298	(NOI)	Tes	MON)	3	The state of the s	Only The Voltage
			25.1	>		
Work Order #	als Intact?	. Custody Seals Intact?	Condition	Temp (°C)	Te	Lab Shipper Name Air Bill #
danazzanyani que			orma erre fartik en en Gere gjale skiptjale den erriten en faktik faktik kjale	j	ariantellanden menencongraphica de la contrata de mitale de contrata de mande de contrata de contrata de contra	
· ·			0	ure) Date/Time	Received by: (signature)	Relinquished by: (signature) Date/Time Re
on consumeration of the consum			Ф	ure) Date/Time	Received by: (signature)	Helinquished by: (signature) Date/lime Re
			4 15%	生がだした		2 STOLY 2 SOUTH A
		Notes:	Ф	Date/Tir	Received/by: (signature)	Ф
5	-29.5	4	1354/1335	4	1944C	10 1- SMI-IA08-20140216
Q	N 20	and the second s	1335/1257		4220	21 4 SMI - INOT-20140216
5.6-	- 36		1317/1347		5767	8A SNI-IAOW -2014 0216
5	-33	en de de la companya	1333/1304		9925	AA SNI-INS-20140216
Q	-30	and a second sec	1331//211		35134	64 SNT - IA04 - 20140216
5	-20		1330/1213		31426	SMI- IA03-2040216
N.	i N Q	and the control of th	1328/1328		34375	991 SMI-IA02-20140216
is is	33	and section in the section of the se	1327/1352		06400	05/ SMI-IA01-20140216
	3	·	4700/264		trance	ORA SMI-0AZ-20140216
\(\frac{1}{2}\)	22	TO R SIM	が表現が	02/14/14/14/14/14	34733	014 SWI-041-20140216
Final Receipt Final	ited Initial	Analyses Requested	of Collection	of Collection of Collection	Can **	Lab I.D. (Location)
Canister Pressure/Vacuum			The	Date)	
N ₂ He	specify		Name	Project Name	THE WAY THE PROPERTY OF THE PR	Phone (4)25) 44(4-04)55 Fax
Pressurization Gas:	Rush		00	Project #	ate <u>UA</u> Zip <u>ÎH</u>	
Date:	Normal	İ				Email
	Time:					Collected by: (Print and Sign) Con Mc Donolog A
Lab Use Only	Turn Around	en e	Project Info:	Proje	5000 M	Project Manager Parthur Parthur

3/5/2014 Mr. Conor McDonough ERM-West 1277 Treat Blvd Suite 500 Walnut Creek CA 94597

Project Name: SMI

Project #: 0201040.01SC Workorder #: 1402299

Dear Mr. Conor McDonough

The following report includes the data for the above referenced project for sample(s) received on 2/19/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Welly Butte

WORK ORDER #: 1402299

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West
1277 Treat Blvd
Suite 500

ERM-West
1277 Treat Blvd
Suite 500

Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 **PROJECT** # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 03/05/2014

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SMI-IA08D-20140216	Modified TO-15	5.0 "Hg	5 psi
01B	SMI-IA08D-20140216	Modified TO-15	5.0 "Hg	5 psi
02A	SMI-IA09-20140216	Modified TO-15	5.5 "Hg	5 psi
02B	SMI-IA09-20140216	Modified TO-15	5.5 "Hg	5 psi
03A	SMI-IA10-20140216	Modified TO-15	9.5 "Hg	5 psi
03B	SMI-IA10-20140216	Modified TO-15	9.5 "Hg	5 psi
04A	SMI-IA11-20140216	Modified TO-15	1.5 "Hg	5 psi
04B	SMI-IA11-20140216	Modified TO-15	1.5 "Hg	5 psi
05A	SMI-IA09D-20140216	Modified TO-15	6.0 "Hg	5 psi
05B	SMI-IA09D-20140216	Modified TO-15	6.0 "Hg	5 psi
06A	SMI-IA12-20140216	Modified TO-15	6.5 "Hg	5 psi
06B	SMI-IA12-20140216	Modified TO-15	6.5 "Hg	5 psi
07A	SMI-IA13-20140216	Modified TO-15	6.5 "Hg	5 psi
07B	SMI-IA13-20140216	Modified TO-15	6.5 "Hg	5 psi
08A	SMI-IA14-20140216	Modified TO-15	6.5 "Hg	5 psi
08B	SMI-IA14-20140216	Modified TO-15	6.5 "Hg	5 psi
09A	SMI-IA15-20140216	Modified TO-15	0.0 "Hg	5 psi
09B	SMI-IA15-20140216	Modified TO-15	0.0 "Hg	5 psi
10A	SMI-IA16-20140216	Modified TO-15	9.0 "Hg	5 psi
10B	SMI-IA16-20140216	Modified TO-15	9.0 "Hg	5 psi
11A	Lab Blank	Modified TO-15	NA	NA
11B	Lab Blank	Modified TO-15	NA	NA
12A	CCV	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1402299

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West
1277 Treat Blvd
Suite 500

ERM-West
1277 Treat Blvd
Suite 500

Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 PROJECT # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 03/05/2014

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
12B	CCV	Modified TO-15	NA	NA
13A	LCS	Modified TO-15	NA	NA
13AA	LCSD	Modified TO-15	NA	NA
13B	LCS	Modified TO-15	NA	NA
13BB	LCSD	Modified TO-15	NA	NA

	fleide flages	
CERTIFIED BY:	0 0	DATE: 03/05/14
CERTIFIED DIT		2.112.

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM ERM-West Workorder# 1402299

Ten 6 Liter Summa Canister (SIM Certified) samples were received on February 19, 2014. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Despite the use of a flow controller for sample collection, the final canister vacuum for sample SMI-IA15-20140216 was measured at ambient pressure in the field. This ambient pressure reading was confirmed by the laboratory upon sample receipt.

The Chain of Custody (COC) information for sample SMI-IA09-20140216 did not match the information on the canister with regard to canister identification. The information on the canister was used to process and report the sample.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client Sample ID: SMI-IA08D-20140216

Lab ID#: 1402299-01A
No Detections Were Found.

Client Sample ID: SMI-IA08D-20140216

Lab ID#: 1402299-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Toluene	0.032	0.30	0.12	1.1	

Client Sample ID: SMI-IA09-20140216

Lab ID#: 1402299-02A
No Detections Were Found.

Client Sample ID: SMI-IA09-20140216

Lab ID#: 1402299-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.033	0.092	0.18	0.50
Trichloroethene	0.033	0.12	0.18	0.63
Toluene	0.033	0.39	0.12	1.5

Client Sample ID: SMI-IA10-20140216

Lab ID#: 1402299-03A
No Detections Were Found.

Client Sample ID: SMI-IA10-20140216

Lab ID#: 1402299-03B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.039	0.040	0.21	0.22
Toluene	0.039	0.40	0.15	1.5

Client Sample ID: SMI-IA11-20140216

Lab ID#: 1402299-04A

Client Sample ID: SMI-IA11-20140216

Lab ID#: 1402299-04A
No Detections Were Found.

Client Sample ID: SMI-IA11-20140216

Lab ID#: 1402299-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	0.028	0.54	0.11	2.0

Client Sample ID: SMI-IA09D-20140216

Lab ID#: 1402299-05A
No Detections Were Found.

Client Sample ID: SMI-IA09D-20140216

Lab ID#: 1402299-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.034	0.11	0.18	0.58
Trichloroethene	0.034	0.12	0.18	0.62
Toluene	0.034	0.39	0.13	1.5

Client Sample ID: SMI-IA12-20140216

Lab ID#: 1402299-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.17	0.27	1.3	2.1

Client Sample ID: SMI-IA12-20140216

Lab ID#: 1402299-06B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.017	0.18	0.068	0.70
1,1,1-Trichloroethane	0.034	1.3	0.19	6.9
Trichloroethene	0.034	0.12	0.18	0.64

Client Sample ID: SMI-IA12-20140216

Lab ID#: 1402299-06B

Toluene 0.034 0.35 0.13 1.3
Tetrachloroethene 0.034 0.047 0.23 0.32

Client Sample ID: SMI-IA13-20140216

Lab ID#: 1402299-07A

 Compound
 Rpt. Limit (ppbv)
 Amount (ppbv)
 Rpt. Limit (ug/m3)
 Amount (ug/m3)

 Freon 113
 0.17
 0.24
 1.3
 1.9

Client Sample ID: SMI-IA13-20140216

Lab ID#: 1402299-07B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Vinyl Chloride	0.017	0.023	0.044	0.058	
1,1-Dichloroethene	0.017	0.32	0.068	1.2	
1,1,1-Trichloroethane	0.034	1.9	0.19	11	
Trichloroethene	0.034	0.073	0.18	0.39	
Toluene	0.034	0.42	0.13	1.6	

Client Sample ID: SMI-IA14-20140216

Lab ID#: 1402299-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	0.40	1.3	3.1
Chloroform	0.17	0.28	0.83	1.4

Client Sample ID: SMI-IA14-20140216

Lab ID#: 1402299-08B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.017	0.086	0.068	0.34
1,1,1-Trichloroethane	0.034	0.81	0.19	4.4
Trichloroethene	0.034	0.053	0.18	0.28
Toluene	0.034	0.44	0.13	1.7

Client Sample ID: SMI-IA14-20140216

Lab ID#: 1402299-08B

Tetrachloroethene 0.034 0.064 0.23 0.43

Client Sample ID: SMI-IA15-20140216

Lab ID#: 1402299-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 113	0.13	0.25	1.0	1.9	

Client Sample ID: SMI-IA15-20140216

Lab ID#: 1402299-09B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.013	0.048	0.053	0.19
1,1,1-Trichloroethane	0.027	0.44	0.15	2.4
Trichloroethene	0.027	0.042	0.14	0.22
Toluene	0.027	0.45	0.10	1.7
Tetrachloroethene	0.027	0.055	0.18	0.37

Client Sample ID: SMI-IA16-20140216

Lab ID#: 1402299-10A No Detections Were Found.

Client Sample ID: SMI-IA16-20140216

Lab ID#: 1402299-10B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.019	0.027	0.076	0.11
1,1,1-Trichloroethane	0.038	0.20	0.21	1.1
Toluene	0.038	0.38	0.14	1.4

Chloroform

Client Sample ID: SMI-IA08D-20140216

Lab ID#: 1402299-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v022510 1.61		of Collection: 2/1 of Analysis: 2/25	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.16	Not Detected	1.2	Not Detected

0.16

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	112	70-130

Not Detected

0.79

Not Detected

Client Sample ID: SMI-IA08D-20140216

Lab ID#: 1402299-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022510sim	Date of Collection: 2/17/14 1:35:00 PM
Dil. Factor:	1.61	Date of Analysis: 2/25/14 05:13 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.064	Not Detected
1,1-Dichloroethane	0.032	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.032	Not Detected	0.18	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Toluene	0.032	0.30	0.12	1.1
Tetrachloroethene	0.032	Not Detected	0.22	Not Detected
trans-1.2-Dichloroethene	0.16	Not Detected	0.64	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	115	70-130

Client Sample ID: SMI-IA09-20140216

Lab ID#: 1402299-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022511	Date of Collection: 2/17/14 12:17:00 PM
Dil. Factor:	1.64	Date of Analysis: 2/25/14 06:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.16	Not Detected	1.2	Not Detected
Chloroform	0.16	Not Detected	0.80	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	91	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: SMI-IA09-20140216

Lab ID#: 1402299-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022511sim	Date of Collection: 2/17/14 12:17:00 PM
Dil. Factor:	1.64	Date of Analysis: 2/25/14 06:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	Not Detected	0.065	Not Detected
1,1-Dichloroethane	0.033	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.033	0.092	0.18	0.50
Trichloroethene	0.033	0.12	0.18	0.63
Toluene	0.033	0.39	0.12	1.5
Tetrachloroethene	0.033	Not Detected	0.22	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	117	70-130

Client Sample ID: SMI-IA10-20140216

Lab ID#: 1402299-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022512	Date of Collection: 2/17/14 1:43:00 PM
Dil. Factor:	1.96	Date of Analysis: 2/25/14 07:20 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.20	Not Detected	1.5	Not Detected
Chloroform	0.20	Not Detected	0.96	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: SMI-IA10-20140216

Lab ID#: 1402299-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022512sim	Date of Collection: 2/17/14 1:43:00 PM
Dil. Factor:	1.96	Date of Analysis: 2/25/14 07:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected
1,1-Dichloroethene	0.020	Not Detected	0.078	Not Detected
1,1-Dichloroethane	0.039	Not Detected	0.16	Not Detected
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
1,1,1-Trichloroethane	0.039	0.040	0.21	0.22
Trichloroethene	0.039	Not Detected	0.21	Not Detected
Toluene	0.039	0.40	0.15	1.5
Tetrachloroethene	0.039	Not Detected	0.26	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.78	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	119	70-130	

Client Sample ID: SMI-IA11-20140216

Lab ID#: 1402299-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022513	Date of Collection: 2/17/14 12:53:00 PM
Dil. Factor:	1.41	Date of Analysis: 2/25/14 08:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.14	Not Detected	1.1	Not Detected
Chloroform	0.14	Not Detected	0.69	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	119	70-130

Client Sample ID: SMI-IA11-20140216

Lab ID#: 1402299-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022513sim	Date of Collection: 2/17/14 12:53:00 PM
Dil. Factor:	1.41	Date of Analysis: 2/25/14 08:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.014	Not Detected	0.036	Not Detected
1,1-Dichloroethene	0.014	Not Detected	0.056	Not Detected
1,1-Dichloroethane	0.028	Not Detected	0.11	Not Detected
cis-1,2-Dichloroethene	0.028	Not Detected	0.11	Not Detected
1,1,1-Trichloroethane	0.028	Not Detected	0.15	Not Detected
Trichloroethene	0.028	Not Detected	0.15	Not Detected
Toluene	0.028	0.54	0.11	2.0
Tetrachloroethene	0.028	Not Detected	0.19	Not Detected
trans-1.2-Dichloroethene	0.14	Not Detected	0.56	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	118	70-130	

Client Sample ID: SMI-IA09D-20140216

Lab ID#: 1402299-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

•		
Dil. Factor:	1.68	Date of Analysis: 2/25/14 09:17 PM
File Name:	v022514	Date of Collection: 2/17/14 12:17:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	121	70-130	

Client Sample ID: SMI-IA09D-20140216

Lab ID#: 1402299-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022514sim	Date of Collection: 2/17/14 12:17:00 PM
Dil. Factor:	1.68	Date of Analysis: 2/25/14 09:17 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	Not Detected	0.067	Not Detected
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.034	0.11	0.18	0.58
Trichloroethene	0.034	0.12	0.18	0.62
Toluene	0.034	0.39	0.13	1.5
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1.2-Dichloroethene	0.17	Not Detected	0.67	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	116	70-130

Client Sample ID: SMI-IA12-20140216

Lab ID#: 1402299-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v022515 1.71	Date of Collection: 2/17/14 12:24:00 PM		
Compound	Rpt. Limit	Amount (ppby)	Rpt. Limit	Amount

Compound	Kpt. Limit (ppbv)	(ppbv)	Kpt. Limit (ug/m3)	(ug/m3)
Freon 113	0.17	0.27	1.3	2.1
Chloroform	0.17	Not Detected	0.83	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	117	70-130	

Client Sample ID: SMI-IA12-20140216

Lab ID#: 1402299-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022515sim	Date of Collection: 2/17/14 12:24:00 PM
Dil. Factor:	1.71	Date of Analysis: 2/25/14 10:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	0.18	0.068	0.70
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.034	1.3	0.19	6.9
Trichloroethene	0.034	0.12	0.18	0.64
Toluene	0.034	0.35	0.13	1.3
Tetrachloroethene	0.034	0.047	0.23	0.32
trans-1.2-Dichloroethene	0.17	Not Detected	0.68	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	118	70-130

Client Sample ID: SMI-IA13-20140216

Lab ID#: 1402299-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022516	Date of Collection: 2/17/14 1:08:00 PM		
Dil. Factor:	1.71	Date of Analysis: 2/25/14 10:39 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.17	0.24	1.3	1.9
Chloroform	0.17	Not Detected	0.83	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	115	70-130

Client Sample ID: SMI-IA13-20140216

Lab ID#: 1402299-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022516sim	Date of Collection: 2/17/14 1:08:00 PM
Dil. Factor:	1.71	Date of Analysis: 2/25/14 10:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	0.023	0.044	0.058
1,1-Dichloroethene	0.017	0.32	0.068	1.2
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.034	1.9	0.19	11
Trichloroethene	0.034	0.073	0.18	0.39
Toluene	0.034	0.42	0.13	1.6
Tetrachloroethene	0.034	Not Detected	0.23	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	117	70-130

Client Sample ID: SMI-IA14-20140216

Lab ID#: 1402299-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022517	Date of Collection: 2/17/14 11:15:00 AM
Dil. Factor:	1.71	Date of Analysis: 2/26/14 06:34 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.17	0.40	1.3	3.1
Chloroform	0.17	0.28	0.83	1.4

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	112	70-130	

Client Sample ID: SMI-IA14-20140216

Lab ID#: 1402299-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022517sim	Data of Collection: 2/17/14 11:15:00 AM
rile Name.	VU22317SIIII	Date of Collection: 2/17/14 11:15:00 AM
Dil. Factor:	1.71	Date of Analysis: 2/26/14 06:34 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	0.086	0.068	0.34
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.034	0.81	0.19	4.4
Trichloroethene	0.034	0.053	0.18	0.28
Toluene	0.034	0.44	0.13	1.7
Tetrachloroethene	0.034	0.064	0.23	0.43
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	118	70-130

Client Sample ID: SMI-IA15-20140216

Lab ID#: 1402299-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

<u>-</u>	Dest. I leads	Amount Dut Limit Amount
Dil. Factor:	1.34	Date of Analysis: 2/26/14 08:09 AM
File Name:	v022519	Date of Collection: 2/17/14 11:02:00 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.13	0.25	1.0	1.9
Chloroform	0.13	Not Detected	0.65	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	118	70-130	

Client Sample ID: SMI-IA15-20140216

Lab ID#: 1402299-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022519sim	Date of Collection: 2/17/14 11:02:00 AM
Dil. Factor:	1.34	Date of Analysis: 2/26/14 08:09 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.013	Not Detected	0.034	Not Detected
1,1-Dichloroethene	0.013	0.048	0.053	0.19
1,1-Dichloroethane	0.027	Not Detected	0.11	Not Detected
cis-1,2-Dichloroethene	0.027	Not Detected	0.11	Not Detected
1,1,1-Trichloroethane	0.027	0.44	0.15	2.4
Trichloroethene	0.027	0.042	0.14	0.22
Toluene	0.027	0.45	0.10	1.7
Tetrachloroethene	0.027	0.055	0.18	0.37
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	118	70-130

Client Sample ID: SMI-IA16-20140216

Lab ID#: 1402299-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022518	Date of Collection: 2/17/14 11:27:00 AM
Dil. Factor:	1.91	Date of Analysis: 2/26/14 07:24 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.19	Not Detected	1.5	Not Detected
Chloroform	0.19	Not Detected	0.93	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	117	70-130

Client Sample ID: SMI-IA16-20140216

Lab ID#: 1402299-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022518sim	Date of Collection: 2/17/14 11:27:00 AM
Dil. Factor:	1.91	Date of Analysis: 2/26/14 07:24 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.019	Not Detected	0.049	Not Detected
1,1-Dichloroethene	0.019	0.027	0.076	0.11
1,1-Dichloroethane	0.038	Not Detected	0.15	Not Detected
cis-1,2-Dichloroethene	0.038	Not Detected	0.15	Not Detected
1,1,1-Trichloroethane	0.038	0.20	0.21	1.1
Trichloroethene	0.038	Not Detected	0.20	Not Detected
Toluene	0.038	0.38	0.14	1.4
Tetrachloroethene	0.038	Not Detected	0.26	Not Detected
trans-1.2-Dichloroethene	0.19	Not Detected	0.76	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	93	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	119	70-130

Client Sample ID: Lab Blank Lab ID#: 1402299-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	v022506 1.00	Date of Collection: NA Date of Analysis: 2/25/14 01:40 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.10	Not Detected	0.77	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Container Type: NA - Not App	olicable			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		89		70-130
Toluene-d8		96		70-130
4-Bromofluorobenzene		113		70-130

Client Sample ID: Lab Blank Lab ID#: 1402299-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022506sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 01:40 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

Surrogates	%Recovery	Metnod Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	116	70-130

Client Sample ID: CCV Lab ID#: 1402299-12A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v022502 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 09:45 AM

 Compound
 %Recovery

 Freon 113
 103

 Chloroform
 94

2		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	115	70-130

Client Sample ID: CCV Lab ID#: 1402299-12B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v022502sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 09:45 AM

Compound	%Recovery	
Vinyl Chloride	86	
1,1-Dichloroethene	92	
1,1-Dichloroethane	83	
cis-1,2-Dichloroethene	98	
1,1,1-Trichloroethane	90	
Trichloroethene	100	
Toluene	96	
Tetrachloroethene	100	
trans-1,2-Dichloroethene	94	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	120	70-130	

Client Sample ID: LCS Lab ID#: 1402299-13A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 10:49 AM

Compound	%Recovery	Method Limits
Freon 113	121	70-130
Chloroform	96	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	121	70-130	

Client Sample ID: LCSD Lab ID#: 1402299-13AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	v022504	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 11:29 AM

Compound	%Recovery	Method Limits
Freon 113	125	70-130
Chloroform	100	70-130

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	118	70-130	

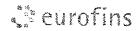
Client Sample ID: LCS Lab ID#: 1402299-13B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v022503sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 10:49 AM

		Method Limits	
Compound	%Recovery		
Vinyl Chloride	89	70-130	
1,1-Dichloroethene	107	70-130	
1,1-Dichloroethane	87	70-130	
cis-1,2-Dichloroethene	115	70-130	
1,1,1-Trichloroethane	94	70-130	
Trichloroethene	104	70-130	
Toluene	98	70-130	
Tetrachloroethene	102	70-130	
trans-1,2-Dichloroethene	85	70-130	

урагия постринально		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	122	70-130	


Client Sample ID: LCSD Lab ID#: 1402299-13BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: v022504sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/25/14 11:29 AM

		Method Limits	
Compound	%Recovery		
Vinyl Chloride	89	70-130	
1,1-Dichloroethene	108	70-130	
1,1-Dichloroethane	88	70-130	
cis-1,2-Dichloroethene	115	70-130	
1,1,1-Trichloroethane	94	70-130	
Trichloroethene	104	70-130	
Toluene	98	70-130	
Tetrachloroethene	101	70-130	
trans-1,2-Dichloroethene	85	70-130	

урагия пострывани		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	124	70-130	

Method :	Modified	TO-15 Hi/Lo	CONTRACTORS	(CT Interest)
MICHIGA .	MIGHIEL	エム-15 はんだの	ODEANUL	(GL intersity

Compound	Rpt. Limit (ugm3)
Vinyl Chloride	0.026
1,1-Dichloroethene	0.040
1,1-Dichloroethane	0.081
cis-1,2-Dichloroethene	0.079
1,1,1-Trichloroethane	0,11
Trìchloroethène	0.11
Toluene	0.075
Tetrachloroethene	0.14
trans-1,2-Dichloroethene	0.40
Freon 113	0.77
Chloroform	0.49

Surrogate	Method Limits	
1,2-Dichloroethane-d4	70-130	
Toluene-d8	70-130	
4-Bromofluorobenzene	70-130	

2 curofins

Method: Modified TO-15 Hi/Lo (S	Sp)-AMEC ((GE Intersil)
---------------------------------	------------	---------------

Compound	Rpt. Limit (ugm3)	
Vinyl Chloride	0.026	
1,1-Dichloroethene	0.040	
1,1-Dichloroethane	0.081	
cis-1,2-Dichloroethene	0.079	
1,1,1-Trichloroethane	0,11	
Trichloroethene	0.11	
Toluene	0.075	
Tetrachloroethene	0,14	
trans-1,2-Dichloroethene	0.40	
Freon 113	0.77	
Chleroform	0.49	

Surrogate	Method Limits
1,2-Díchloroethane-d4	70~130
Toluene-d8	70-130
4-Bromofluorobenzene	70-130

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

(916) 985-1000 FAX (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719

Page 2 of 3

1402299	No (None)	Yes No	(Xio a Z	3			ATT SAPLET	Only Only
Work Order #	als Intact?	Custody Seals Intact?	Condition	Temp (°C)		Air Bill #	Shipper Name	5
HALISTA FOR FASSE AND STANSFASSE STANSFASSE STANSFASSE STANSFASSE STANSFASSE STANSFASSE STANSFASSE STANSFASSE S			Pe	ure) Date/Time	Received by: (signature)	Date/Time Re	Relinquished by: (signature) [Relinquis
men e e e e e e e e e e e e e e e e e e					Received by: signature)	Date/Time Re	Relinquished by: (signature) [Relinguis
nikacuuzapapakah			114 130	10 219/14	TAKE ACC	2/18/14 2/10 PM		
	-3	Notes V	1227/127		Baceived by (signature)	10216	Refinguished by: (signature) [10/1 Refinault
à	-28		1204/1102	And the second second	3729	5-20140216	SMI - INS-	18 X
3	33		1706/1115		11625	IA14-20140216	SWI - HRIF) 88 34
	3		1382/138		4384	IA13-20140216	SMI - INIS	40
atta juni	8		1347/1224	And Service Colonia	2505	JA12-20140216	SW1 - 1712	1990
2.9	-30		1348/1217	For promotion to the state of t	32114	IA09D-20140216	SWI-IROG	450
5	-29	.is	1340/1253		34497	- 2014 0216	SMI- IAII - 2014 0216	41
20.00	-30	on spirous dampinistic of	She/1865		12695	IA10-70140716	SNIT - INO-	H.co
6	2		1348/1217	equantity of the	33868	-IA09-20140216	SWI-IRON.	OR F
50	8	AISSIM	1336/1335	1141/2/14/12	びずひず	20140216	SMI-600 5-20140216	
Final Receipt Final (psi)	ted Initial	Analyses Requested	of Collection	ection	## 60 60 60 60 60 60 60 60 60 60 60 60 60	rield Salliple I.D. (Location)	No.	Lau i.u
Canister Pressure/Vacuum	Canist			Dar).			- 5
N_2 He	specify		Project Name SM 1	Projec	WHITE STATES AND THE	такий при настройний	HERTOTAL STATES OF THE STATES	Phone
Pressurization Gas:	☐ Rush	, 40°0180	000	Project #	State Zip	CitySt	THE TRANSPORT OF THE TR	Address
Date:	Normal			P.O. #		Email	12 N 12 12 12 12 12 12 12 12 12 12 12 12 12	Company
Lab Use Only Pressurized by:	Turn Around		Project info:	27.0	The state of the s	Collected by: (Print and Sign) (NNNV M/ Dovary)	Collected by: (Print and Sign) (0000)	Collecte
	Househousense engeloutense statemen 1990 SASSESSE	WATER STANDARD TO STANDARD STA		Simple State of the State of th		į		ָבְילְבָּרְ בְּיבְרָבְּיִרְבָּיִרְבָּיִי

2 curofins

Method: Modified TO-15 Hi/Lo (S	Sp)-AMEC ((GE Intersil)
---------------------------------	------------	---------------

Compound	Rpt. Limit (ugm3)
Vinyl Chloride	0.026
1,1-Dichloroethene	0.040
1,1-Dichloroethane	0.081
cis-1,2-Dichloroethene	0.079
1,1,1-Trichloroethane	0,11
Trichloroethene	0.11
Toluene	0.075
Tetrachloroethene	0,14
trans-1,2-Dichloroethene	0.40
Freon 113	0.77
Chleroform	0.49

Surrogate	Method Limits
1,2-Díchloroethane-d4	70~130
Toluene-d8	70-130
4-Bromofluorobenzene	70-130

3/5/2014 Mr. Conor McDonough ERM-West 1277 Treat Blvd Suite 500 Walnut Creek CA 94597

Project Name: SMI

Project #: 0201040.01SC Workorder #: 1402300

Dear Mr. Conor McDonough

The following report includes the data for the above referenced project for sample(s) received on 2/19/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Kelly Butte

WORK ORDER #: 1402300

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West ERM-West
1277 Treat Blvd 1277 Treat Blvd
Suite 500 Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 **PROJECT** # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner

DATE COMPLETED: 02/25/2014

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SMI-IA16D-20140216	Modified TO-15	6.5 "Hg	5 psi
01B	SMI-IA16D-20140216	Modified TO-15	6.5 "Hg	5 psi
02A	SMI-IA17-20140216	Modified TO-15	5.5 "Hg	5 psi
02B	SMI-IA17-20140216	Modified TO-15	5.5 "Hg	5 psi
03A	SMI-IA18-20140216	Modified TO-15	7.0 "Hg	5 psi
03B	SMI-IA18-20140216	Modified TO-15	7.0 "Hg	5 psi
04A	SMI-IA19-20140216	Modified TO-15	5.5 "Hg	5 psi
04B	SMI-IA19-20140216	Modified TO-15	5.5 "Hg	5 psi
05A	SMI-IA20-20140216	Modified TO-15	3.5 "Hg	5 psi
05B	SMI-IA20-20140216	Modified TO-15	3.5 "Hg	5 psi
06A	SMI-IA21-20140216	Modified TO-15	6.0 "Hg	5 psi
06B	SMI-IA21-20140216	Modified TO-15	6.0 "Hg	5 psi
07A	SMI-IA22-20140216	Modified TO-15	7.5 "Hg	5 psi
07B	SMI-IA22-20140216	Modified TO-15	7.5 "Hg	5 psi
08A	SMI-IA23-20140216	Modified TO-15	6.0 "Hg	5 psi
08B	SMI-IA23-20140216	Modified TO-15	6.0 "Hg	5 psi
09A	Lab Blank	Modified TO-15	NA	NA
09B	Lab Blank	Modified TO-15	NA	NA
10A	CCV	Modified TO-15	NA	NA
10B	CCV	Modified TO-15	NA	NA
11A	LCS	Modified TO-15	NA	NA
11AA	LCSD	Modified TO-15	NA	NA
11B	LCS	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1402300

Work Order Summary

CLIENT: Mr. Conor McDonough BILL TO: Mr. Conor McDonough

ERM-West
1277 Treat Blvd
Suite 500
ERM-West
1277 Treat Blvd
Suite 500
Suite 500

Walnut Creek, CA 94597 Walnut Creek, CA 94597

PHONE: 925-946-0455 **P.O.** # 0201040.01SC

FAX: 925-946-9968 **PROJECT** # 0201040.01SC SMI

DATE RECEIVED: 02/19/2014 **CONTACT:** Kelly Buettner 02/25/2014

FRACTION# NAME TEST VAC./PRES. PRESSURE
11BB LCSD Modified TO-15 NA NA

	fleide flages	
CERTIFIED BY:	0 00	DATE: $\frac{03/05/14}{}$

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935
Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)
Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.
Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 956:

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM ERM-West Workorder# 1402300

Eight 6 Liter Summa Canister (SIM Certified) samples were received on February 19, 2014. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Client Sample ID: SMI-IA16D-20140216

Lab ID#: 1402300-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 113	0.17	0.17	1.3	1.3	

Client Sample ID: SMI-IA16D-20140216

Lab ID#: 1402300-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.017	0.027	0.068	0.11
1,1,1-Trichloroethane	0.034	0.24	0.19	1.3
Trichloroethene	0.034	0.037	0.18	0.20
Toluene	0.034	0.41	0.13	1.5
Tetrachloroethene	0.034	0.038	0.23	0.26

Client Sample ID: SMI-IA17-20140216

Lab ID#: 1402300-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.16	0.16	1.2	1.2
Chloroform	0.16	0.38	0.80	1.8

Client Sample ID: SMI-IA17-20140216

Lab ID#: 1402300-02B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	0.016	0.022	0.065	0.088
1,1,1-Trichloroethane	0.033	0.22	0.18	1.2
Trichloroethene	0.033	0.050	0.18	0.27
Toluene	0.033	0.39	0.12	1.5
Tetrachloroethene	0.033	0.041	0.22	0.28

Client Sample ID: SMI-IA18-20140216

Lab ID#: 1402300-03A
No Detections Were Found.

Client Sample ID: SMI-IA18-20140216

Lab ID#: 1402300-03B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
1,1-Dichloroethene	0.018	0.018	0.069	0.070	
1,1,1-Trichloroethane	0.035	0.17	0.19	0.94	
Trichloroethene	0.035	0.044	0.19	0.24	
Toluene	0.035	0.52	0.13	2.0	

Client Sample ID: SMI-IA19-20140216

Lab ID#: 1402300-04A
No Detections Were Found.

Client Sample ID: SMI-IA19-20140216

Lab ID#: 1402300-04B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.016	0.030	0.065	0.12
1,1,1-Trichloroethane	0.033	0.22	0.18	1.2
Toluene	0.033	0.35	0.12	1.3

Client Sample ID: SMI-IA20-20140216

Lab ID#: 1402300-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.15	0.20	1.2	1.5

Client Sample ID: SMI-IA20-20140216

Lab ID#: 1402300-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.015	0.040	0.060	0.16
1,1,1-Trichloroethane	0.030	0.30	0.16	1.6
Trichloroethene	0.030	0.032	0.16	0.17
Toluene	0.030	0.43	0.11	1.6
Tetrachloroethene	0.030	0.034	0.21	0.23

Client Sample ID: SMI-IA21-20140216

Lab ID#: 1402300-06A
No Detections Were Found.

Client Sample ID: SMI-IA21-20140216

Lab ID#: 1402300-06B

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Dichloroethene	0.017	0.038	0.067	0.15
1,1,1-Trichloroethane	0.034	0.27	0.18	1.5
Trichloroethene	0.034	0.034	0.18	0.18
Toluene	0.034	0.38	0.13	1.4

Client Sample ID: SMI-IA22-20140216

Lab ID#: 1402300-07A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.18	0.37	1.4	2.8

Client Sample ID: SMI-IA22-20140216

Lab ID#: 1402300-07B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,1-Dichloroethene	0.018	0.031	0.071	0.12
1,1,1-Trichloroethane	0.036	0.37	0.20	2.0
Toluene	0.036	0.46	0.13	1.7

Client Sample ID: SMI-IA23-20140216

Lab ID#: 1402300-08A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 113	0.17	0.21	13	1.6

Client Sample ID: SMI-IA23-20140216

Lab ID#: 1402300-08B

Client Sample ID: SMI-IA23-20140216

Lab ID#: 1402300-08B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	_
1,1-Dichloroethene	0.017	0.024	0.067	0.095	
1,1,1-Trichloroethane	0.034	0.22	0.18	1.2	
Toluene	0.034	0.46	0.13	1.7	

Client Sample ID: SMI-IA16D-20140216

Lab ID#: 1402300-01A

File Name: Dil. Factor:	c022510 1.71		of Collection: 2/17 of Analysis: 2/25/	,
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	0.17	1.3	1.3
Chloroform	0.17	Not Detected	0.83	Not Detected
Container Type: 6 Liter Summa	a Canister (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		99		70-130
Toluene-d8		98		70-130
4-Bromofluorobenzene		92		70-130

Client Sample ID: SMI-IA16D-20140216

Lab ID#: 1402300-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022510sim	Date of Collection: 2/17/14 11:27:00 AM		7/14 11:27:00 AM
Dil. Factor:	1.71	Date of Analysis: 2/25/14 02:57 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.044	Not Detected
1,1-Dichloroethene	0.017	0.027	0.068	0.11
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.034	0.24	0.19	1.3
Trichloroethene	0.034	0.037	0.18	0.20
Toluene	0.034	0.41	0.13	1.5
Tetrachloroethene	0.034	0.038	0.23	0.26

Container Type: 6 Liter Summa Canister (SIM Certified)

trans-1,2-Dichloroethene

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130

0.17

Not Detected

Not Detected

0.68

Client Sample ID: SMI-IA17-20140216

Lab ID#: 1402300-02A

File Name: Dil. Factor:	c022507 1.64		e of Collection: 2/17/ e of Analysis: 2/25/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.16	0.16	1.2	1.2
Chloroform	0.16	0.38	0.80	1.8
Container Type: 6 Liter Summa	a Canister (SIM Certified)			
•				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		92		70-130
Toluene-d8		101		70-130
i didelle-do				

Client Sample ID: SMI-IA17-20140216

Lab ID#: 1402300-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022507sim		of Collection: 2/17 of Analysis: 2/25/	
Compound	1.64 Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	0.022	0.065	0.088
1,1-Dichloroethane	0.033	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.033	0.22	0.18	1.2
Trichloroethene	0.033	0.050	0.18	0.27

0.39

0.041

Not Detected

0.12

0.22

0.65

1.5

0.28

Not Detected

0.033

0.033

0.16

Container Type: 6 Liter Summa Canister (SIM Certified)

Toluene

Tetrachloroethene

trans-1,2-Dichloroethene

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: SMI-IA18-20140216

Lab ID#: 1402300-03A

File Name: Dil. Factor:	c022508 1.75		Date of Collection: 2/17/14 11:34:00 AM Date of Analysis: 2/25/14 01:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 113	0.18	Not Detected	1.3	Not Detected	
Chloroform	0.18	Not Detected	0.85	Not Detected	
Container Type: 6 Liter Summa	a Canister (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		96		70-130	
Toluene-d8		102		70-130	
4-Bromofluorobenzene		100		70-130	

Client Sample ID: SMI-IA18-20140216

Lab ID#: 1402300-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022508sim	2508sim Date of Collection: 2/17/14 11:34:00 A		
Dil. Factor:	1.75	1.75 Date of Analysis: 2/25/14 01:28 F		4 01:28 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected
1,1-Dichloroethene	0.018	0.018	0.069	0.070
1,1-Dichloroethane	0.035	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.035	0.17	0.19	0.94
Trichloroethene	0.035	0.044	0.19	0.24
Toluene	0.035	0.52	0.13	2.0
Tetrachloroethene	0.035	Not Detected	0.24	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: SMI-IA19-20140216

Lab ID#: 1402300-04A

File Name: Dil. Factor:	c022509 1.64			on: 2/17/14 11:44:00 AM s: 2/25/14 02:20 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 113	0.16	Not Detected	1.2	Not Detected	
Chloroform	0.16	Not Detected	0.80	Not Detected	
Container Type: 6 Liter Summa	a Canister (SIM Certified)				
				Method	
Surrogates		%Recovery		Limits	
1,2-Dichloroethane-d4		96		70-130	
Toluene-d8		101		70-130	
4-Bromofluorobenzene		100		70-130	

Client Sample ID: SMI-IA19-20140216

Lab ID#: 1402300-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	-		Date of Collection: 2/17/14 11:44:0 Date of Analysis: 2/25/14 02:20 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected
1,1-Dichloroethene	0.016	0.030	0.065	0.12
1,1-Dichloroethane	0.033	Not Detected	0.13	Not Detected
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.033	0.22	0.18	1.2
Trichloroethene	0.033	Not Detected	0.18	Not Detected
Toluene	0.033	0.35	0.12	1.3
Tetrachloroethene	0.033	Not Detected	0.22	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

	•	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: SMI-IA20-20140216

Lab ID#: 1402300-05A

File Name: Dil. Factor:	c022511 1.52		Date of Collection: 2/17/14 11:48:00 Date of Analysis: 2/25/14 03:40 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.15	0.20	1.2	1.5
Chloroform	0.15	Not Detected	0.74	Not Detected
Container Type: 6 Liter Summa	Canister (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		100		70-130
Toluene-d8		101		70-130
4-Bromofluorobenzene		101		70-130

Client Sample ID: SMI-IA20-20140216

Lab ID#: 1402300-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022511sim	Date of Collection: 2/17/14 11:48:00 AM
Dil. Factor:	1.52	Date of Analysis: 2/25/14 03:40 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
1,1-Dichloroethene	0.015	0.040	0.060	0.16
1,1-Dichloroethane	0.030	Not Detected	0.12	Not Detected
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
1,1,1-Trichloroethane	0.030	0.30	0.16	1.6
Trichloroethene	0.030	0.032	0.16	0.17
Toluene	0.030	0.43	0.11	1.6
Tetrachloroethene	0.030	0.034	0.21	0.23
trans-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: SMI-IA21-20140216

Lab ID#: 1402300-06A

File Name: Dil. Factor:	c022512 1.68	Date of Collection: 2/17/14 12:05:00 PM Date of Analysis: 2/25/14 04:27 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	Not Detected	1.3	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected
Container Type: 6 Liter Summa	a Canister (SIM Certified)			
Cumanata		0/ December		Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		95		70-130
Toluene-d8		102		70-130
4-Bromofluorobenzene		102		70-130

Client Sample ID: SMI-IA21-20140216

Lab ID#: 1402300-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022512sim			of Collection: 2/17/14 12:05:00 PM of Analysis: 2/25/14 04:27 PM	
Compound	Rpt. Limit			Amount (ug/m3)	
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected	
1,1-Dichloroethene	0.017	0.038	0.067	0.15	
4.4 Diablamanthama	0.024	Not Detected	0.14	Not Detected	

1,1-Dichloroethane 0.034 Not Detected 0.14 Not Detected 0.034 Not Detected 0.13 Not Detected cis-1,2-Dichloroethene 1,1,1-Trichloroethane 0.034 0.27 0.18 1.5 0.18 Trichloroethene 0.034 0.034 0.18 Toluene 0.034 0.38 0.13 1.4 Tetrachloroethene 0.034 Not Detected 0.23 Not Detected trans-1,2-Dichloroethene Not Detected Not Detected 0.67 0.17

Container Type: 6 Liter Summa Canister (SIM Certified)

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: SMI-IA22-20140216

Lab ID#: 1402300-07A

File Name: Dil. Factor:	c022513 1.79		Date of Collection: 2/17/14 1:11:00 PM Date of Analysis: 2/25/14 05:14 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 113	0.18	0.37	1.4	2.8	
Chloroform	0.18	Not Detected	0.87	Not Detected	
Container Type: 6 Liter Summa	Canister (SIM Certified)				
Surrogates		%Recovery		Method Limits	
1,2-Dichloroethane-d4		97		70-130	
Toluene-d8		101		70-130	

Client Sample ID: SMI-IA22-20140216

Lab ID#: 1402300-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022513sim	Date of Collection: 2/17/14 1:11:00 PM
Dil. Factor:	1.79	Date of Analysis: 2/25/14 05:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected
1,1-Dichloroethene	0.018	0.031	0.071	0.12
1,1-Dichloroethane	0.036	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
1,1,1-Trichloroethane	0.036	0.37	0.20	2.0
Trichloroethene	0.036	Not Detected	0.19	Not Detected
Toluene	0.036	0.46	0.13	1.7
Tetrachloroethene	0.036	Not Detected	0.24	Not Detected
trans-1.2-Dichloroethene	0.18	Not Detected	0.71	Not Detected

Container Type: 6 Liter Summa Canister (SIM Certified)

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: SMI-IA23-20140216

Lab ID#: 1402300-08A

File Name: Dil. Factor:	c022514 1.68	Date of Collection: 2/17/14 11:59:00 AM Date of Analysis: 2/25/14 06:23 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.17	0.21	1.3	1.6
Chloroform	0.17	Not Detected	0.82	Not Detected
Container Type: 6 Liter Summa	Canister (SIM Certified)			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		99		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		100		70-130

Client Sample ID: SMI-IA23-20140216

Lab ID#: 1402300-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022514sim	Date of Collection: 2/17/14 11:59:00 AM		7/14 11:59:00 AM
Dil. Factor:	1.68	Date	Date of Analysis: 2/25/14 06:23 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.017	Not Detected	0.043	Not Detected
1,1-Dichloroethene	0.017	0.024	0.067	0.095
1,1-Dichloroethane	0.034	Not Detected	0.14	Not Detected
cis-1,2-Dichloroethene	0.034	Not Detected	0.13	Not Detected
1,1,1-Trichloroethane	0.034	0.22	0.18	1.2
Trichloroethene	0.034	Not Detected	0.18	Not Detected

0.46

Not Detected

Not Detected

0.13

0.23

0.67

1.7

Not Detected

Not Detected

0.034

0.034

0.17

Container Type: 6 Liter Summa Canister (SIM Certified)

Toluene

Tetrachloroethene

trans-1,2-Dichloroethene

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: Lab Blank Lab ID#: 1402300-09A

File Name: Dil. Factor:	c022506 1.00	Date of Collection: NA Date of Analysis: 2/25/14 11:48 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 113	0.10	Not Detected	0.77	Not Detected
Chloroform	0.10	Not Detected	0.49	Not Detected
Container Type: NA - Not Applicab	le			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		97		70-130
Toluene-d8		100		70-130
4-Bromofluorobenzene		96		70-130

Client Sample ID: Lab Blank Lab ID#: 1402300-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	c022506sim 1.00	Date of Collection: NA Date of Analysis: 2/25/14 11:48 AM		14 11:48 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
1,1-Dichloroethene	0.010	Not Detected	0.040	Not Detected
1,1-Dichloroethane	0.020	Not Detected	0.081	Not Detected
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
1,1,1-Trichloroethane	0.020	Not Detected	0.11	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1402300-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 08:36 AM

 Compound
 %Recovery

 Freon 113
 104

 Chloroform
 104

2F		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: CCV Lab ID#: 1402300-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022502sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 08:36 AM

Compound	%Recovery	
Vinyl Chloride	92	
1,1-Dichloroethene	106	
1,1-Dichloroethane	105	
cis-1,2-Dichloroethene	110	
1,1,1-Trichloroethane	110	
Trichloroethene	103	
Toluene	105	
Tetrachloroethene	110	
trans-1,2-Dichloroethene	107	

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: LCS Lab ID#: 1402300-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022503	Date of Collecti	on: NA	
Dil. Factor:	1.00	Date of Analysi	is: 2/25/14 09:25 AM	
Compound		%Recovery	Method Limits	
Freon 113		122	70-130	
Chloroform		107	70-130	
Container Type: NA - Not Appli	icable			
			Method	
Surrogates		%Recovery	Limits	
1,2-Dichloroethane-d4		91	70-130	
Toluene-d8		103	70-130	
4-Bromofluorobenzene		103	70-130	

Client Sample ID: LCSD Lab ID#: 1402300-11AA

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022504	Date of Collecti	of Collection: NA		
Dil. Factor:	1.00	Date of Analysi	is: 2/25/14 10:07 AM		
Compound		%Recovery	Method Limits		
Freon 113		124	70-130		
Chloroform		108	70-130		
Container Type: NA - Not Appl	icable				
			Method		
Surrogates		%Recovery	Limits		
1,2-Dichloroethane-d4		90	70-130		
Toluene-d8		103	70-130		
4-Bromofluorobenzene		107	70-130		

Client Sample ID: LCS Lab ID#: 1402300-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022503sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 09:25 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	94	70-130
1,1-Dichloroethene	121	70-130
1,1-Dichloroethane	109	70-130
cis-1,2-Dichloroethene	127	70-130
1,1,1-Trichloroethane	110	70-130
Trichloroethene	107	70-130
Toluene	108	70-130
Tetrachloroethene	112	70-130
trans-1,2-Dichloroethene	94	60-140

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: LCSD Lab ID#: 1402300-11BB

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	c022504sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/25/14 10:07 AM

Compound	%Recovery	Method Limits
Vinyl Chloride	94	70-130
1,1-Dichloroethene	122	70-130
1,1-Dichloroethane	110	70-130
cis-1,2-Dichloroethene	129	70-130
1,1,1-Trichloroethane	111	70-130
Trichloroethene	108	70-130
Toluene	111	70-130
Tetrachloroethene	112	70-130
trans-1,2-Dichloroethene	95	60-140

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	111	70-130

earofins .

Air Tuxics

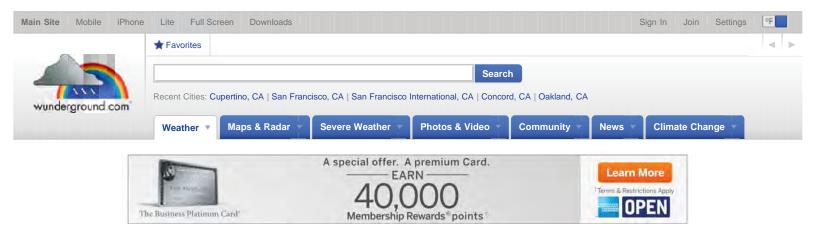
Sample Transportation Natice
Reinquishing signature on this occurrent indignost transport has a poling shipped in portry area with all applicable local, Statu. Federal rational, and international trival regulations and ordinances of any land. Air Toxics Limited securines no facility with respect to the collection, handling of all riping of these samples. Reinquishing signature area indignates agreement to hald harmless ideand and internally air 1966s. Limited sgamet any calin, demand, or action, of any kind, related to the collection, handling, or chipping of samples. D.C.T. Hotime (800), 487, 4922.

(916) 965-1000 FAX (916) 985-1000 120 BLUE RAVINE BOSD SUITE B FOLSOM, ON 96800-4719

Page 👉 9. (3)

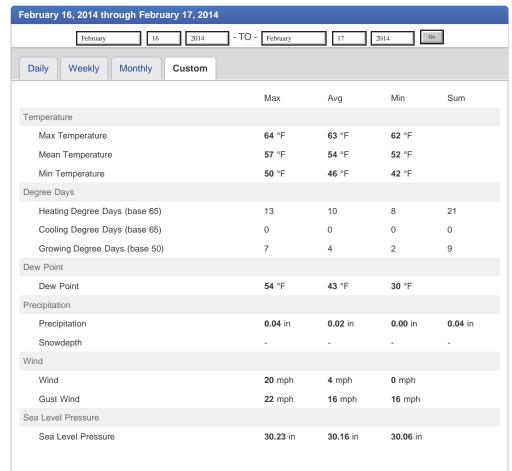
38 36
· ! !
Analyses Asquested Initial Fine Receip Fine
G ALSh Profesivization 3-48:
Tim Avound Lacus Own

Form 1999, agrid


1402300

្លាំ eurofins

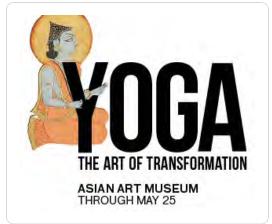
And Breeze

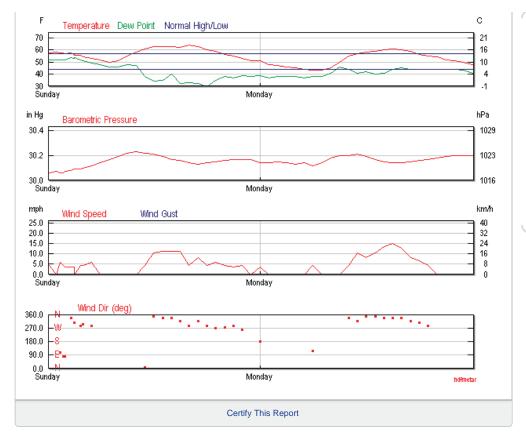

Method : Modified	TO-15 Hi/Lo (Sp)-AMEC (GR IntersE)
Compound	Ret, Limit (ugm3)
Vinv. Chlodde	0:028
1.1-Claricoesiene	G.Q40
1.1-Dichibrise#hane	0.081
enertieoroldoru (C.1-20	6.079
1,1,1-Tosirkunerhane	G.#\$
Trichlamemene	0.11
Toldene	0.075
Tatracultine thene	9.44
frans-1,2-Dichloroetnede 1	û.40
Freon 113	0,77
Chloreia m ,	9.49
Silvogate	Method Limits
t. 5-Distrilorgethane-84	70-190
To uema-dd	70-480
4-Brompilu probenzens	70-130

Appendix F Weather Data

Weather History for Moffett NAS, CA

February 16, 2014 through February 17, 2014 — View Current Weather Conditions





Weather History Location

KNUQ

Airport:

Observations

2014	Temp.	(°F)		Dew P	oint (°F)	Humid	ity (%)		Sea Lev	el Press.	(in)	Visibili	ty (mi)		Wind (mph)		Precip. (in)	Events
Feb	high	avg	low	high	avg	low	high	avg	low	high	avg	low	high	avg	low	high	avg	high	sum	
16	64	57	50	54	44	30	89	60	31	30.23	30.14	30.06	10	10	4	14	5	17	0.04	Rain
17	62	52	42	46	42	37	82	65	47	30.21	30.17	30.12	10	10	10	20	4	22	0.00	
	Comma Delimited File																			

Show full METARS METAR FAQ Comma Delimited File

Local Weather My Favorites History Data Weather Stations Maps & Radar Radar Satellite WunderMap™ Severe Weather Tropical & Hurricane Storm Reports U.S. Severe Alerts Photos & Video Photo Galleries World View Webcams Blogs Dr. Jeff Masters Meteorology Blogs Member Blogs Travel & Activities
Travel Planner
Road Trip Planner
Ski & Snow

Climate Climate Change Evidence Record Extremes

Custom Weather Services

In addition to this website, we provide a number of free and professional weather services.

Advertise On This Site

Weather Underground has extensive targeting capabilities to fulfill all of your client's

Appendix G Data Quality Review Memo

APPENDIX G - QUALITY ASSURANCE/QUALITY CONTROL EVALUATION

Analytical data are the basis for evaluating the environmental conditions at the Intersil/Siemens Superfund Site in Cupertino, California. It is essential that the data are accurate and reflect actual conditions.

To ensure data quality was acceptable for decision-making purposes, ERM-West, Inc. (ERM) reviewed laboratory analytical results for the air samples collected in February 2014 at the former Siemens facility. The purpose of this review is to identify limitations on the use of the data and identify data that should not be used for decision-making purposes. The data quality was assessed and qualifiers were applied following the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Data Review (United States Environmental Protection Agency [USEPA], June 2008).

ERM reviewed data for compliance with the following quality assurance/quality control (QA/QC) and method-prescribed criteria for level II review:

- **Chain-of-Custody:** The chain-of-custody was reviewed to evaluate the integrity of the samples.
- **Canister Vacuum Evaluation:** The condition and vacuum of the summa canisters upon receipt is evaluated.
- **Holding Time:** The period of time between collection of the sample and preparation/analysis of the sample is evaluated. Analyses performed for this project have method-prescribed holding times.
- **Blank Samples:** The analysis of contaminant-free air evaluated. Blank samples for this investigation included method blanks. Detections in a blank sample may indicate laboratory contamination. All samples are evaluated for common laboratory contaminants during the blank evaluation.
- **Spike Samples:** The preparation and analysis of an environmental sample or a blank sample spiked with a subset of target compounds at known concentrations is evaluated. The results of the blank spike analysis measure laboratory accuracy, and results from the environmental sample spike measure potential interferences from the matrix.
- **Surrogate Spikes:** The addition of compounds similar to target compounds of interest that are added to sample aliquots for organic analysis is evaluated. Surrogate spikes measure possible interferences from the sample matrix for the analysis of target compounds.

• **Duplicate Samples:** The preparation and analysis of an additional aliquot of the sample is evaluated. The results from duplicate analysis measure potential heterogeneity of contaminants in the sample.

Level IV review was performed on 20% of the samples in the sampling event. The level IV review was performed on data in package 1402298 and included all of the QA/QC project and/or method-prescribed criteria for level II review plus:

- Calibration: The analysis of target analytes at a range of concentrations to develop a graphical plot of instrument response against the different analyte concentrations. An initial calibration curve establishes the graphical plot, and the continuing calibration verification monitors daily instrument linearity against the initial calibration.
- **Instrument Performance Check:** An instrument performance check was performed prior to analysis of samples or standards. The compound 4-bromofluorobenzene (BFB) was used to ensure mass resolution and identification of the mass spectrometer. All ion abundance criteria were met.
- **Internal standards:** The addition of compounds similar to target compounds of interest that are added to sample aliquots for organic analysis. The internal standards are used to quantitatively and qualitatively evaluate retention time and response for each sample.

Potential USEPA qualifiers that may have been applied during the review process are as follows:

- **U** (Nondetected): The analyte was reported as detected by the laboratory, but the reported concentrations should be considered nondetected above the laboratory reporting limit.
- J (Estimated): The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- N (Tentative identification): The analysis indicated the presence of an analyte for which there was presumptive evidence to make only a "tentative identification."
- **NJ** (Estimated tentative identification): The analysis indicated the presence of an analyte that had been "tentatively identified" and the associated numerical value represents its approximate concentration.
- **UJ** (Estimated, nondetected): The analyte was not detected above the reported sample quantitation limit; however, the reported quantitation limit was approximate and may or may not have

- represented the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- **R** (Rejected): The sample results were rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte could not be verified.

None of the data were rejected during the data review. All data, including data qualified as estimated, are acceptable and can be used for decision-making purposes. The following discussion addresses each of the QA/QC components listed above and the validation results for each of the components.

LEVEL II REVIEW

Chain-of-Custody Discrepancies

In the data package 1402299, a discrepancy was noted between the sample information noted for sample "SMI-IA09-020140216" on the chain-of-custody and on the canister. The laboratory used the information on the canister to process the sample.

Holding Time

The USEPA has established a maximum sample holding time for each analysis. Holding times extending beyond the USEPA maximum or samples that are not properly preserved can negatively affect sample integrity (e.g., loss of volatile compounds, biodegradation) and are qualified depending on the severity of the exceedence and compounds of concern.

ERM has reviewed the analytical results for compliance with the methodprescribed preparation and analysis holding times. None of the data were qualified based on holding time exceedances.

Canister Vacuum Evaluation

The canister vacuums were received at acceptable pressures, with limited exceptions. Three canisters were received with vacuum pressures of zero. All compounds in the samples are qualified as estimated (J/UJ) as shown in Table 1.

Blank Samples

A blank sample consists of contaminant-free reagent air and is prepared and analyzed in the same manner as the samples. The purpose of a blank sample is to determine the presence and magnitude of possible contamination resulting from laboratory, shipping, or other sample-handling activities. If target compounds are detected in a blank sample, then all associated data must be carefully evaluated to determine whether those results have been similarly impacted, or the blank problem is an isolated occurrence not representative of other data.

Method blank samples were analyzed and reported with the site air samples. A method blank was prepared and analyzed with each batch of environmental samples. Method blank samples monitor for potential contamination of samples from the laboratory.

The method blank results were nondetected for the target analytes. No sample data were qualified on the basis of the blank evaluation.

Spike Samples

A spike sample is a QC sample that is prepared and analyzed by the laboratory in the same manner as the samples. The laboratory prepares, analyzes, and reports spike samples to demonstrate proper analysis, detection, and quantification of target compounds. The accuracy of spike samples is assessed by percent recovery (%R), which is calculated as the amount of the detected compound divided by the amount spiked into the sample. The %R is then compared to an established limit range.

Blank spike samples, which are commonly referred to as LCS, consist of an aliquot of contaminant-free air that is spiked with known concentrations of target compounds. The LCS sample monitors laboratory accuracy without the bias of a sample matrix. LCS recoveries outside of acceptable limits may indicate poor laboratory accuracy. The relative percent difference (RPD) between LCS and LCSD are evaluated for laboratory precision.

The LCS and LCSD %R and RPD indicate acceptable laboratory accuracy and precision. No qualifications were required.

Surrogate Spikes

A surrogate spike is used to assess interference from the sample matrix during the analysis. Surrogate spike results are assessed by %R, based on

the concentration of surrogate in the sample divided by the known amount of surrogate added to the sample aliquot.

The surrogate recoveries were compared to the laboratory-generated limits of acceptance. All surrogate recoveries were within acceptable limits. None of the data were qualified for surrogate outliers. The surrogate results indicate that there was minimal interference from the sample matrix.

Duplicate Samples

A duplicate sample is a second aliquot of a sample that is prepared and analyzed in the same manner as the original sample. A duplicate sample analysis is performed to measure the precision of the method and to assess possible matrix heterogeneity.

Three samples were submitted in duplicate. ERM calculated the RPD between detected values in each field duplicate pair. The project workplan established control criteria of <25% RPD for field duplicate precision. The RPDs indicate matrix homogeneity in the samples collected for this sampling event. The calculated RPDs are presented in Table 2. No RPDs exceeded the control criteria; therefore, sample data are not qualified on the basis of field duplicate imprecision.

LEVEL IV REVIEW

Calibration Evaluation

Before an analytical instrument is used for sample analysis, the instrument must be calibrated to be within USEPA method specifications. The purpose of this calibration is to ensure that the instrument is appropriately responsive to measurable chemical concentrations. If an instrument is not properly calibrated, it may not be capable of producing acceptable quantitative, qualitative, and reproducible data. For example, detected concentrations of a given compound that would still be considered valid could contain an undetermined degree of inaccuracy. In the case of nondetections, the reporting limit would be similarly affected; such results would still be considered nondetections.

Two types of calibration data were reviewed. These were initial calibration (ICAL) and continuing calibration verification (CCV). A curve establishes a graphical plot of instrument response against the different analyte concentrations, and the CCV monitors daily instrument linearity against the initial calibration. The ICAL consisted of standards that were

analyzed at five concentrations. These concentrations ranged from the reporting limit to the upper linear range of the instrument. The laboratory calculated the relative standard deviation (RSD) for each of the target analytes included in the ICAL. The laboratory also calculated the relative response factors (RRFs) for the analytes in the ICAL. The reported percent relative standard deviations and RRFs were compared to the method-prescribed acceptance criteria and validation criteria during the data validation. Method TO-15 calibration criteria specify less than 30% RSD for all compounds, with the allowance of two compounds less than 40%RSD. This differs slightly from National Functional Guidelines, which allows for 20% RSD for all compounds, but 40% RSD for certain poor responders. ERM deferred to the method criteria, as TO-15 differs slightly from the Contract Laboratory Program method that National Functional Guidelines is based upon.

A CCV is analyzed every 12 hours to ensure the instrument response is still within method-performance criteria for linearity. The CCV consisted of analyzing a standard at one concentration; the concentration of this standard was generally in the mid-range of the ICAL standard concentrations. The laboratory calculated the percent difference (%D) between CCV and the ICAL. The laboratory calculated the CCV RRFs. The %Ds and RRFs were then compared to the method-prescribed acceptance criteria and validation criteria during the data validation. Method TO-15 calibration verification criteria specify less than 30%D for all target compounds. This is more stringent than the National Functional Guidelines criterion of 40%D. Results quantitated using an unacceptable %D or RRF value may be subject to error.

The ICAL and CCV results were within method TO-15 acceptable limits for target analytes; therefore, sample data are not qualified on the basis of evaluation of equipment calibration.

Instrument Performance Check

Prior to the analysis of any calibration standards, blanks, or field samples, the laboratory must establish that the analytical instrument meets all method-specified mass spectral ion abundance criteria. The laboratory must perform a tune using BFB at the beginning of each 24-hour analysis day. The BFB tune must meet the method ion abundance criteria to be considered valid. Calibration or analysis may not begin until after a valid tune has been analyzed. If the tune fails, the laboratory must inspect the system for problems, fix any problems, and rerun the tune. Analysis may not proceed until a valid tune is analyzed.

The BFB tunes were performed at the correct frequency and met ion abundance criteria; therefore, sample data are not qualified on the basis of review of instrument performance.

Internal Standard Evaluation

Internal standards (ISs) are used in gas chromatograph/mass spectrometer (GC/MS) analyses. A constant amount of IS is added to all standards and samples. The ratio of the peak area or height of the target analyte to the peak area or height of the IS is compared to a similar ratio derived for each calibration standard. The target analyte concentration is calculated relative to that of the IS.

For TO-15 analyses, IS areas or heights must be between 60% and 140% of the IS area or height from the mean area or height of the IS in the most recent valid calibration. The laboratory must re-prepare and reanalyze any sample, standard, or blank that does not meet this criterion. If a sample cannot be reanalyzed or the IS response is still outside the method-specified limits, the laboratory must include a discussion of the possible cause, and any effects on data usability.

The IS areas that were reviewed met method criteria; therefore, sample data are not qualified on the basis of review of internal standards.

OVERALL ASSESSMENT

All qualified data can be used for decision-making purposes; however, the limitation identified by the applied qualifier should be considered when using the data. The quality of the data generated during this investigation is acceptable for the preparation of technically defensible documents.

Table 1
Samples with Vacuum Pressure Outside of Acceptable Limits
February 2014 Indoor Air Samples
Intersil/Siemens Site
Cupertino, California

		Vacuum Pressure		ERM
Lab Package	Sample ID	(inches mercury)	Compound	Qualifier
1402298	SMI-IA04-20140216	0.0	All	J/UJ
1402298	SMI-IA07-20140216	0.0	All	J/UJ
1402299	SMI-IA15-20140216	0.0	All	J/UJ

Lab reports reviewed: 1402298, 1402299, 1402300

Key:

J/UJ = Detected/nondetected compounds are qualified as estimated

Table 2
Field Duplicate Results and Calculated Relative Percent Differences
February 2014 Indoor Air Samples
Intersil/Siemens Site
Cupertino, California

Lab				Concentration		Report		
Package	Sample/Duplicate ID	Analysis	Compound	Sample	Duplicate	Limit	Units	RPD
1402298/	SMI-IA08-20140216/							
1402299	SMI-IA08D-20140216	TO-15 SIM	Toluene	1.1	1.1	0.13/0.13	ug/m3	0
	SMI-IA09-20140216/					-	0.	
1402299	SMI-IA09D-20140216	TO-15 SIM	1,1,1-Trichloroethane	0.50	0.58	0.18/0.18	ug/m3	15
	SMI-IA09-20140216/						O.	
1402299	SMI-IA09D-20140216	TO-15 SIM	Trichloroethene	0.63	0.62	0.18/0.18	ug/m3	2
	SMI-IA09-20140216/					·	O.	
1402299	SMI-IA09D-20140216	TO-15 SIM	Toluene	1.5	1.5	0.12/0.13	ug/m3	0
1402299/	SMI-IA16-20140216/						O.	
1402300	SMI-IA16D-20140216	TO-15 SIM	1,1-Dichloroethene	0.11	0.11	0.076/0.068	ug/m3	0
1402299/	SMI-IA16-20140216/					·	Ç,	
1402300	SMI-IA16D-20140216	TO-15 SIM	1,1,1-Trichloroethane	1.1	1.3	0.21/0.19	ug/m3	17
1402299/	SMI-IA16-20140216/					,	0,	
1402300	SMI-IA16D-20140216	TO-15 SIM	Toluene	1.4	1.5	0.14/0.13	ug/m3	7

Data packages reviewed: 1402298, 1402299, 1402300

Key:

RPD = Relative percent difference ug/m3 = micrograms per cubic meter